1
|
Blachowicz T, Ehrmann A. Optical Properties of Electrospun Nanofiber Mats. MEMBRANES 2023; 13:441. [PMID: 37103868 PMCID: PMC10146296 DOI: 10.3390/membranes13040441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Electrospun nanofiber mats are usually applied in fields where their high specific surface area and small pore sizes are important, such as biotechnology or filtration. Optically, they are mostly white due to scattering from the irregularly distributed, thin nanofibers. Nevertheless, their optical properties can be modified and become highly important for different applications, e.g., in sensing devices or solar cells, and sometimes for investigating their electronic or mechanical properties. This review gives an overview of typical optical properties of electrospun nanofiber mats, such as absorption and transmission, fluorescence and phosphorescence, scattering, polarized emission, dyeing and bathochromic shift as well as the correlation with dielectric constants and the extinction coefficient, showing which effects may occur and can be measured by which instruments or used for different applications.
Collapse
Affiliation(s)
- Tomasz Blachowicz
- Center for Science and Education, Institute of Physics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
2
|
Das D, Manna J, Bhattacharyya TK. Efficient Hydrogen Evolution via 1T-MoS 2 /Chlorophyll-a Heterostructure: Way Toward Metal Free Green Catalyst. SMALL METHODS 2023; 7:e2201446. [PMID: 36807895 DOI: 10.1002/smtd.202201446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Electrocatalytic hydrogen evolution reaction (HER) is regarded as a sustainable and green way for H2 generation, which faces a great challenge in designing highly active, stable electrocatalysts to replace the state-of-art noble metal-platinum catalysts. 1T MoS2 is highly promising in this regard, but the synthesis and stability of this is a particularly pressing task. Here, a phase engineering strategy has been proposed to achieve a stable, high-percentage (88%) 1T MoS2 /chlorophyll-a hetero-nanostructure, through a photo-induced donation of anti-bonding electrons from chlorophyll-a (CHL-a) highest occupied molecular orbital to 2H MoS2 lowest unoccupied molecular orbital. The resultant catalyst has abundant binding sites provided by the coordination of magnesium atom in the CHL-a macro-cycle, featuring higher binding strength and low Gibbs-free energy. This metal-free heterostructure exhibits excellent stability via band renormalization of Mo 4d orbital which creates the pseudogap-like structure by lifting the degeneracy of projected density of state with 4S in 1T MoS2 . It shows extremely low overpotential, toward the acidic HER (68 mV at the current density of 10 mA cm-2 ), very close to the Pt/C catalyst (53 mV). The high electrochemical-surface-area and electrochemical turnover frequency support enhanced active sites along with near zero Gibbs free energy. Such a surface-reconstruction strategy provides a new avenue toward the production of efficient non-noble-metal-catalysts for the HER with the aim of green-hydrogen production.
Collapse
Affiliation(s)
- Debmallya Das
- School of Nano-Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Jhimli Manna
- Department of Electronics and Communication Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Tarun Kanti Bhattacharyya
- Department of Electronics and Communication Engineering, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
3
|
Kanjwal MA, Ghaferi AA. Graphene Incorporated Electrospun Nanofiber for Electrochemical Sensing and Biomedical Applications: A Critical Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:8661. [PMID: 36433257 PMCID: PMC9697565 DOI: 10.3390/s22228661] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
The extraordinary material graphene arrived in the fields of engineering and science to instigate a material revolution in 2004. Graphene has promptly risen as the super star due to its outstanding properties. Graphene is an allotrope of carbon and is made up of sp2-bonded carbon atoms placed in a two-dimensional honeycomb lattice. Graphite consists of stacked layers of graphene. Due to the distinctive structural features as well as excellent physico-chemical and electrical conductivity, graphene allows remarkable improvement in the performance of electrospun nanofibers (NFs), which results in the enhancement of promising applications in NF-based sensor and biomedical technologies. Electrospinning is an easy, economical, and versatile technology depending on electrostatic repulsion between the surface charges to generate fibers from the extensive list of polymeric and ceramic materials with diameters down to a few nanometers. NFs have emerged as important and attractive platform with outstanding properties for biosensing and biomedical applications, because of their excellent functional features, that include high porosity, high surface area to volume ratio, high catalytic and charge transfer, much better electrical conductivity, controllable nanofiber mat configuration, biocompatibility, and bioresorbability. The inclusion of graphene nanomaterials (GNMs) into NFs is highly desirable. Pre-processing techniques and post-processing techniques to incorporate GNMs into electrospun polymer NFs are precisely discussed. The accomplishment and the utilization of NFs containing GNMs in the electrochemical biosensing pathway for the detection of a broad range biological analytes are discussed. Graphene oxide (GO) has great importance and potential in the biomedical field and can imitate the composition of the extracellular matrix. The oxygen-rich GO is hydrophilic in nature and easily disperses in water, and assists in cell growth, drug delivery, and antimicrobial properties of electrospun nanofiber matrices. NFs containing GO for tissue engineering, drug and gene delivery, wound healing applications, and medical equipment are discussed. NFs containing GO have importance in biomedical applications, which include engineered cardiac patches, instrument coatings, and triboelectric nanogenerators (TENGs) for motion sensing applications. This review deals with graphene-based nanomaterials (GNMs) such as GO incorporated electrospun polymeric NFs for biosensing and biomedical applications, that can bridge the gap between the laboratory facility and industry.
Collapse
|
4
|
Menazea A, Ahmed M. Synthesis and antibacterial activity of graphene oxide decorated by silver and copper oxide nanoparticles. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128536] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Al-Dhahebi AM, Gopinath SCB, Saheed MSM. Graphene impregnated electrospun nanofiber sensing materials: a comprehensive overview on bridging laboratory set-up to industry. NANO CONVERGENCE 2020; 7:27. [PMID: 32776254 PMCID: PMC7417471 DOI: 10.1186/s40580-020-00237-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/07/2020] [Indexed: 05/04/2023]
Abstract
Owing to the unique structural characteristics as well as outstanding physio-chemical and electrical properties, graphene enables significant enhancement with the performance of electrospun nanofibers, leading to the generation of promising applications in electrospun-mediated sensor technologies. Electrospinning is a simple, cost-effective, and versatile technique relying on electrostatic repulsion between the surface charges to continuously synthesize various scalable assemblies from a wide array of raw materials with diameters down to few nanometers. Recently, electrospun nanocomposites have emerged as promising substrates with a great potential for constructing nanoscale biosensors due to their exceptional functional characteristics such as complex pore structures, high surface area, high catalytic and electron transfer, controllable surface conformation and modification, superior electric conductivity and unique mat structure. This review comprehends graphene-based nanomaterials (GNMs) (graphene, graphene oxide (GO), reduced GO and graphene quantum dots) impregnated electrospun polymer composites for the electro-device developments, which bridges the laboratory set-up to the industry. Different techniques in the base polymers (pre-processing methods) and surface modification methods (post-processing methods) to impregnate GNMs within electrospun polymer nanofibers are critically discussed. The performance and the usage as the electrochemical biosensors for the detection of wide range analytes are further elaborated. This overview catches a great interest and inspires various new opportunities across a wide range of disciplines and designs of miniaturized point-of-care devices.
Collapse
Affiliation(s)
- Adel Mohammed Al-Dhahebi
- Department of Fundamental & Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Centre of Innovative Nanostructure & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Subash Chandra Bose Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000, Kangar, Perlis, Malaysia
| | - Mohamed Shuaib Mohamed Saheed
- Centre of Innovative Nanostructure & Nanodevices (COINN), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Department of Mechanical Engineering , Universiti Teknologi PETRONAS , 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia.
| |
Collapse
|
6
|
Chae S, Oh S, Choi KH, Jeon J, Liu Z, Wang C, Lim C, Dong X, Woo C, Asghar G, Chang J, Nurunnabi M, Kang J, Song SY, Yu HK, Choi JY. Aqueous Dispersion of One-Dimensional van der Waals Material Mo6S3I6 with the Charge Type of the Hydrophobic Dispersant Tail. ACS APPLIED BIO MATERIALS 2020; 3:3992-3998. [DOI: 10.1021/acsabm.0c00541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sudong Chae
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seungbae Oh
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung Hwan Choi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiho Jeon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Zhixiang Liu
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Cong Wang
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Changmo Lim
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Xue Dong
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chaeheon Woo
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ghulam Asghar
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jongwha Chang
- School of Pharmacy, University of Texas, El Paso, Texas 79968, United States
| | - Md Nurunnabi
- School of Pharmacy, University of Texas, El Paso, Texas 79968, United States
| | - Joohoon Kang
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Si Young Song
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Hak Ki Yu
- Department of Materials Science and Engineering & Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Jae-Young Choi
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Zhang S, Li S, Xia Z, Cai K. A review of electronic skin: soft electronics and sensors for human health. J Mater Chem B 2020; 8:852-862. [PMID: 31942905 DOI: 10.1039/c9tb02531f] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article reviews several categories of electronic skins (e-skins) for monitoring signals involved in human health. It covers advanced candidate materials, compositions, structures, and integrate strategies of e-skin, focusing on stretchable and wearable electronics. In addition, this article further discusses the potential applications and expected development of e-skins. It is possible to provide a new generation of sensors which are able to introduce artificial intelligence to the clinic and daily healthcare.
Collapse
Affiliation(s)
- Songyue Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education and Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, School of Optoelectronics Engineering, Chongqing University, Chongqing 400044, China.
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
8
|
|