1
|
Majola N, Jeena V. Benzylic C-H Oxidation: Recent Advances and Applications in Heterocyclic Synthesis. Molecules 2024; 29:6047. [PMID: 39770135 PMCID: PMC11678705 DOI: 10.3390/molecules29246047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Benzylic C-H oxidation to form carbonyl compounds, such as ketones, is a fundamental transformation in organic synthesis as it allows for the preparation of versatile intermediates. In this review, we highlight the synthesis of aromatic ketones via catalytic, electrochemical, and photochemical oxidation of alkylarenes using different catalysts and oxidants in the past 5 years. Additionally, we also discuss the synthesis of heterocyclic molecules using benzylic C-H oxidation as a key step. These methods can potentially be used in medicinal, synthetic, and inorganic chemistry.
Collapse
Affiliation(s)
| | - Vineet Jeena
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa;
| |
Collapse
|
2
|
Elsberg JGD, Borowski T, Reinheimer EW, Berreau LM. Anion- and Water-facilitated Oxidative Carbon-Carbon Bond Cleavage and Diketonate Carboxylation in Cu(II) Chlorodiketonate Complexes. Inorganica Chim Acta 2024; 571:122203. [PMID: 39399531 PMCID: PMC11465868 DOI: 10.1016/j.ica.2024.122203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The O2-dependent carbon-carbon (C-C) bond cleavage reactions of the mononuclear Cu(II) chlorodiketonate complexes [(6-Ph2TPA)Cu(PhC(O)CClC(O)Ph)]ClO4 (1-ClO 4 ) and [(bpy)Cu(PhC(O)CClC(O)Ph)(ClO4)] (3-ClO 4 ) have been further examined in terms of their anion and water dependence. The bpy-ligated Cu(II) chlorodiketonate complex 3-ClO 4 is inherently more reactive with O2 than the 6-Ph2TPA-ligated analog 1-ClO 4 . Added chloride is needed to facilitate O2 reactivity for 1-ClO 4 but not for 3-ClO 4 at 25(1) °C. Evaluation of k obs for the reaction of 1-ClO 4 with O2 under pseudo first-order conditions as a function of the amount of added chloride ion produced saturation type behavior. The bpy-ligated 3-ClO 4 exhibits different behavior, with rate enhancement resulting from both the addition of chloride ion and water. Computational studies indicate that the presence of water lowers the barrier for O2 activation for 3-ClO 4 by ~12 kcal/mol whereas changing the anion from perchlorate to chloride has a smaller effect (lowering of the barrier by ~3 kcal/mol). Notably, the effect of water for 3-ClO 4 is of similar magnitude to the barrier-lowering chloride effect found in the O2 activation pathway for 1-ClO 4 . Thus, both systems involve lower energy O2 activation pathways available, albeit resulting from different ligand effects. Probing the effect of added benzoate anion, it was found that the chloro substituent in the diketonate moiety of 1-ClO 4 and 3-ClO 4 will undergo displacement upon treatment of each complex with tetrabutyl ammonium benzoate to give Cu(II) benzoyloxydiketonate complexes (4 and 5). Complexes 4 and 5 exhibit slow O2-dependent C-C cleavage in the presence of added chloride ion. These results are discussed in the context of the chemistry identified for various divalent metal chlorodiketonate complexes, which have relevance to catalytic systems and metalloenzymes that mediate O2-dependent C-C cleavage within diketonate substrates.
Collapse
Affiliation(s)
- Josiah G. D. Elsberg
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow 30-239, Poland
| | - Eric W. Reinheimer
- Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381 USA
| | - Lisa M. Berreau
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300
| |
Collapse
|
3
|
Kumar M, Sharma AK, Ishu K, Singh KN. Sulfur-Mediated Decarboxylative Amidation of Cinnamic Acids via C═C Bond Cleavage. J Org Chem 2024; 89:9888-9895. [PMID: 38920263 DOI: 10.1021/acs.joc.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A new strategy for the synthesis of amides has been developed using sulfur-mediated decarboxylative coupling of cinnamic acids with amines via oxidative cleavage of the C═C bond.
Collapse
Affiliation(s)
- Mahesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anup Kumar Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Km Ishu
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Jadav JP, Vankar JK, Gupta A, Gururaja GN. Atmospheric Oxygen Facilitated Oxidative Amidation to α-Ketoamides and Unusual One Carbon Degradative Amidation to N-Alkyl Amides. J Org Chem 2023; 88:15551-15561. [PMID: 37883330 DOI: 10.1021/acs.joc.3c00457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A mild, transition-metal-free novel synthetic approach for the construction of C═O and C-N bonds has been demonstrated. Easily accessible gem-dibromoalkenes under similar conditions form oxidative amidation product α-ketoamides and unusual degradative amidation product N-alkyl amides by simply changing the amine substitute. Atmospheric air containing molecular oxygen proved to be an ideal oxidant for an amidation reaction. Under similar conditions, the electron-deficient gem-dibromoalkenes play a dual role with different formamides forming novel oxidative amidation products and by the state of art neighboring group participation of amine to unusual one-carbon degradative amidation products.
Collapse
Affiliation(s)
- Jaydeepbhai P Jadav
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Jigarkumar K Vankar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Ankush Gupta
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | | |
Collapse
|
5
|
Lv C, Zhao R, Wang X, Liu D, Muschin T, Sun Z, Bai C, Bao A, Bao YS. Copper-Catalyzed Transamidation of Unactivated Secondary Amides via C-H and C-N Bond Simultaneous Activations. J Org Chem 2023; 88:2140-2157. [PMID: 36701175 DOI: 10.1021/acs.joc.2c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Here, we demonstrate that α-C-H and C-N bonds of unactivated secondary amides can be activated simultaneously by the copper catalyst to synthesize α-ketoamides or α-ketoesters in one step, which is a challenging and underdeveloped transformation. Using copper as a catalyst and air as an oxidant, the reaction is compatible with a broad range of acetoamides, amines, and alcohols. The preliminary mechanism studies and density functional theory calculation indicated that the reaction process may undergo first radical α-oxygenation and then transamidation with the help of the resonant six-membered N,O-chelation and molecular oxygen plays a role as an initiator to trigger the transamidation process. The combination of chelation assistance and dioxygen selective oxygenation strategy would substantially extend the modern mild synthetic amide cleavage toolbox, and we envision that this broadly applicable method will be of great interest in the biopharmaceutical industry, synthetic chemistry, and agrochemical industry.
Collapse
Affiliation(s)
- Cong Lv
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Ruisheng Zhao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Xiuying Wang
- Inner Mongolia Autonomous Region Animal Epidemic Prevention Center, Hohhot 010020, China
| | - Dan Liu
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Tegshi Muschin
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Zhaorigetu Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Chaolumen Bai
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Agula Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Yong-Sheng Bao
- Inner Mongolia Key Laboratory of Green Catalysis, College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| |
Collapse
|
6
|
Chandra P. Recent Advancement in the Copper Mediated Synthesis of Heterocyclic Amides as Important Pharmaceutical and Agrochemicals. ChemistrySelect 2021. [DOI: 10.1002/slct.202103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Prakash Chandra
- School of Technology Pandit Deendayal Petroleum University Gandhinagar Gujarat 382007 India
| |
Collapse
|
7
|
Ma H, Lu G, Han B, Huang G, Zhang Y, Wang JJ. Copper(I)-catalysed aerobic oxidative selective cleavage of C C bond with DMAP: Facile access to N-substituted benzamides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
A novel gold(I)-mediated intramolecular transamidation of benzoyl thiourea derivatives to form benzamides via dethiocyanation. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Tong Z, Tang Z, Au CT, Qiu R. Nickel-Catalyzed Decarbonyloxidation of 3-Aryl Benzofuran-2( 3H)-ones to 2-Hydroxybenzophenones. J Org Chem 2020; 85:8533-8543. [PMID: 32483961 DOI: 10.1021/acs.joc.0c00858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a protocol to facilitate the nickel-catalyzed decarbonyloxidation of 3-aryl benzofuran-2(3H)-ones to 2-hydroxybenzophenones under mild conditions, which is an efficient approach for the decarbonyloxidation of lactones in organic synthesis. A diverse range of substrates can undergo C(O)-O/C(O)-C bond cleavage to generate the target products in good yields. These 2-hydroxybenzophenones can be converted into a variety of compounds via reactions such as esterification, cyclization, and reduction.
Collapse
Affiliation(s)
- Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhi Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chak-Tong Au
- College of Chemistry and Chemical Engineering, Institute of Engineering, Xiangtan 411100, P.R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
10
|
Yuan JW, Zhu JL, Li B, Yang LY, Mao P, Zhang SR, Li YC, Qu LB. Transition-metal free C3-amidation of quinoxalin-2(1H)-ones using Selectfluor as a mild oxidant. Org Biomol Chem 2019; 17:10178-10187. [PMID: 31763665 DOI: 10.1039/c9ob02157d] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A practical and efficient synthetic route to construct a variety of 3-amidated quinoxalin-2(1H)-ones was developed via transition-metal free direct oxidative amidation of quinoxalin-2(1H)-ones with amidates using Selectfluor reagent as a mild oxidant. This protocol features mild reaction conditions, operational simplicity, broad substrate scope, and good to excellent yields.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Jun-Liang Zhu
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Bing Li
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Liang-Yu Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology; Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China.
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications; Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Yan-Chun Li
- Henan Key Laboratory of Nanocomposites and Applications; Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Ling-Bo Qu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
The Synthesis of N-(Pyridin-2-yl)-Benzamides from Aminopyridine and Trans-Beta-Nitrostyrene by Fe2Ni-BDC Bimetallic Metal–Organic Frameworks. Processes (Basel) 2019. [DOI: 10.3390/pr7110789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A bimetallic metal–organic framework material, which was generated by bridging iron (III) cations and nickel (II) cations with 1,4-Benzenedicarboxylic anions (Fe2Ni-BDC), was synthesized by a solvothermal approach using nickel (II) nitrate hexahydrate and iron (III) chloride hexahydrate as the mixed metal source and 1,4-Benzenedicarboxylic acid (H2BDC) as the organic ligand source. The structure of samples was determined by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, and nitrogen physisorption measurements. The catalytic activity and recyclability of the Fe2Ni-BDC catalyst for the Michael addition amidation reaction of 2-aminopyridine and nitroolefins were estimated. The results illustrated that the Fe2Ni-BDC catalyst demonstrated good efficiency in the reaction under optimal conditions. Based on these results, a reaction mechanism was proposed. When the molar ratio of 2-aminopyridine and trans-β-nitrostyrene was 1:1, and the solvent was dichloromethane, the isolated yield of pyridyl benzamide reached 82%; at 80 °C over 24 h. The catalyst can be reused without a substantial reduction in catalytic activity with 77% yield after six times of reuse.
Collapse
|
12
|
Sofi FA, Sharma R, Kavyasree S, Salim SA, Wanjari PJ, Bharatam PV. Singlet oxygen mediated one pot synthesis of N-pyridinylamides via oxidative amidation of aryl alkyl ketones. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
13
|
Le TNM, Doan SH, Pham PH, Trinh KH, Huynh TV, Tran TTT, Le MV, Nguyen TT, Phan NTS. Synthesis of triphenylpyridines via an oxidative cyclization reaction using Sr-doped LaCoO 3 perovskite as a recyclable heterogeneous catalyst. RSC Adv 2019; 9:23876-23887. [PMID: 35530585 PMCID: PMC9069450 DOI: 10.1039/c9ra04096j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/13/2019] [Indexed: 01/25/2023] Open
Abstract
An La0.6Sr0.4CoO3 strontium-doped lanthanum cobaltite perovskite was prepared via a gelation and calcination approach and used as a heterogeneous catalyst for the synthesis of triphenylpyridines via the cyclization reaction between ketoximes and phenylacetic acids. The transformation proceeded via the oxidative functionalization of the sp3 C-H bond in phenylacetic acid. The La0.6Sr0.4CoO3 catalyst demonstrated a superior performance to that of the pristine LaCoCO3 as well as a series of homogeneous and heterogeneous catalysts. Furthermore, the La0.6Sr0.4CoO3 catalyst was facilely recovered and reused without considerable decline in its catalytic efficiency. To the best of our knowledge, the combination of ketoximes with easily available phenylacetic acids is novel.
Collapse
Affiliation(s)
- Thu N M Le
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Son H Doan
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Phuc H Pham
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Khang H Trinh
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Tien V Huynh
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Tien T T Tran
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Minh-Vien Le
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Tung T Nguyen
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| | - Nam T S Phan
- Faculty of Chemical Engineering, HCMC University of Technology, VNU-HCM 268 Ly Thuong Kiet, District 10 Ho Chi Minh City Vietnam +84 8 38637504 +84 8 38647256 extn 5681
| |
Collapse
|
14
|
Sharma AK, Kumar P, Vishwakarma RK, Singh KN. Visible‐Light‐Enabled Synthesis of Pyridyl Benzamides via Oxidative Decarbethoxylation using Copper(I) Iodide/Air at Room Temperature. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Anup Kumar Sharma
- Department of Chemistry (Centre of advanced Study) Institution of ScienceBanaras Hindu University Varanasi 221005 India
| | - Promod Kumar
- Department of Chemistry (Centre of advanced Study) Institution of ScienceBanaras Hindu University Varanasi 221005 India
| | - Ramesh Kumar Vishwakarma
- Department of Chemistry (Centre of advanced Study) Institution of ScienceBanaras Hindu University Varanasi 221005 India
| | - Krishna Nand Singh
- Department of Chemistry (Centre of advanced Study) Institution of ScienceBanaras Hindu University Varanasi 221005 India
| |
Collapse
|
15
|
Zeynizadeh B, Mousavi H, Zarrin S. Application of Cu(Hdmg)
2
as a simple and cost‐effective catalyst for the convenient one‐pot reductive acetylation of aromatic nitro compounds. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| | - Saviz Zarrin
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| |
Collapse
|
16
|
Sharma AK, Jaiswal A, Singh KN. Cu-Catalysed oxidative amidation of cinnamic acids/arylacetic acids with 2° amines: an efficient synthesis of α-ketoamides. Org Biomol Chem 2019; 17:9348-9351. [DOI: 10.1039/c9ob02045d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper-catalysed decarboxylation/oxidative amidation of cinnamic acids and oxidative amidation of arylacetic acids with 2° amines have been developed leading to the formation of α-ketoamides.
Collapse
Affiliation(s)
- Anup Kumar Sharma
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi 221005
- India
| | - Anjali Jaiswal
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi 221005
- India
| | - Krishna Nand Singh
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi 221005
- India
| |
Collapse
|