1
|
Wang T, Wang Z, Xing P, Hao A. Thermal Chiroptical Switch Based on an Ultrahigh Temperature-Initiated Macrocycle Gel Platform. Macromol Rapid Commun 2024; 45:e2400316. [PMID: 38825873 DOI: 10.1002/marc.202400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/22/2024] [Indexed: 06/04/2024]
Abstract
Responsive chiral optical materials have gained considerable interests from the fields of sensing, display, and optical devices. Materials that are capable of changing chiral optics under harsh conditions such as strong basic/acidic or ultrahigh temperature provides thoughts for the design of materials working at special environments, which however, are still underdeveloped. Here, a proof-of-concept design of organogel is reported that acts as matrices for thermal chiroptical switch with critical working temperature above 100 °C. The reversible solution-to-gel transition of the specific β-cyclodextrin/dimethyl formide/LiCl system is initialized at about 130 °C, when the luminophores with aggregation-induced-emission property shall be lighted up with transferred chirality from inherent chiral β-cyclodextrin. It allows for the controlled emergence of circularly polarized luminescence. This delicate design enables successful fabrication of ultrahigh temperature thermal chiroptical switch.
Collapse
Affiliation(s)
- Tianhao Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhuoer Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
2
|
Vinodh M, Al-Azemi TF. Crystal structure and supra-molecular features of a host-guest inclusion complex based on A1/A2-hetero-difunctionalized pillar[5]arene. Acta Crystallogr E Crystallogr Commun 2024; 80:1069-1074. [PMID: 39372180 PMCID: PMC11451480 DOI: 10.1107/s2056989024009216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
A host-guest supra-molecular inclusion complex was obtained from the co-crystallization of A1/A2-bromo-but-oxy-hy-droxy difunctionalized pillar[5]arene (PilButBrOH) with adipo-nitrile (ADN), C47H53.18Br0.82O10·C6H8N2. The adipo-nitrile guest is stabilized within the electron-rich cavity of the pillar[5]arene host via multiple C-H⋯O and C-H⋯π inter-actions. Both functional groups on the macrocyclic rim are engaged in supra-molecular inter-actions with an adjacent inclusion complex via hydrogen-bonding (O-H⋯N or C-H⋯Br) inter-actions, resulting in the formation of a supra-molecular dimer in the crystal structure.
Collapse
Affiliation(s)
- Mickey Vinodh
- Department of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| | - Talal F. Al-Azemi
- Department of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
| |
Collapse
|
3
|
Kato K, Fa S, Ogoshi T. Alignment and Dynamic Inversion of Planar Chirality in Pillar[n]arenes. Angew Chem Int Ed Engl 2023; 62:e202308316. [PMID: 37518814 DOI: 10.1002/anie.202308316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/01/2023]
Abstract
Pillar[n]arenes are symmetrical macrocyclic compounds composed of benzene panels with para-methylene linkages. Each panel usually exhibits planar chirality and prefers chirality-aligned states. Because of this feature, pillar[n]arenes are attractive scaffolds for chiroptical materials that are easy to prepare and optically resolve and show intense circular dichroism (CD) signals. In addition, rotation of the panels endows the chirality of pillar[n]arenes with a dynamic nature. The chirality in tubular oligomers and supramolecular assemblies sometimes show time- and procedure-dependent alignment phenomena. Furthermore, the CD signals of some pillar[n]arenes respond to the addition of chiral guests when their dynamic chirality is coupled with host-guest properties. By using diastereomeric pillar[n]arenes with additional chiral structures, the response can also be caused by achiral guests and changes of the environment, providing molecular sensors.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shixin Fa
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi, 710072, P. R. China
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
- WPI Nano Life Science Institute, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
4
|
Zhao T, Wu W, Yang C. Chiroptical regulation of macrocyclic arenes with flipping-induced inversion of planar chirality. Chem Commun (Camb) 2023; 59:11469-11483. [PMID: 37691554 DOI: 10.1039/d3cc03829g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Studies on various macrocyclic arenes have received increasing attention due to their straightforward syntheses, convenient derivatization, and unique complexation properties. Represented by pillar[n]arenes, several distinctive macrocyclic arenes have recently emerged with the following characteristics: they possess a pair of enantiomeric planar chiral conformations, and interconversion between these enantiomeric conformations can be achieved through the flipping of ring units. Complexation of a chiral guest with these macrocyclic arenes will lead to a shift of the equilibrium between the Rp and Sp conformers, leading to intriguing possibilities for chiral induction and sensing. By the introduction of bulky substituents on the rims, employing rotaxanation or pseudocatenation, planar chirality could be locked, enabling the enantiomeric separation of the chiral structures. The induced or separated chiral conformers/compounds exhibit significant chiroptical properties. These macrocyclic arenes, with flipping-induced inversion of planar chirality, demonstrated intriguing chiral induction dynamics and kinetics. In this featured review, we systematically summarize the progress in chiroptical induction/regulation of these macrocyclic arenes, particularly in the fields of chiral sensing, molecular machines, molecular recognition, and assembly.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| |
Collapse
|
5
|
Gao F, Yu X, Liu L, Chen J, Lv Y, Zhao T, Ji J, Yao J, Wu W, Yang C. Chiroptical switching of molecular universal joint triggered by complexation/release of a cation: A stepwise synergistic complexation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Kato K, Fa S, Ohtani S, Shi TH, Brouwer AM, Ogoshi T. Noncovalently bound and mechanically interlocked systems using pillar[ n]arenes. Chem Soc Rev 2022; 51:3648-3687. [PMID: 35445234 DOI: 10.1039/d2cs00169a] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pillar[n]arenes are pillar-shaped macrocyclic compounds owing to the methylene bridges linking the para-positions of the units. Owing to their unique pillar-shaped structures, these compounds exhibit various excellent properties compared with other cyclic host molecules, such as versatile functionality using various organic synthesis techniques, substituent-dependent solubility, cavity-size-dependent host-guest properties in organic media, and unit rotation along with planar chiral inversion. These advantages have enabled the high-yield synthesis and rational design of pillar[n]arene-based mechanically interlocked molecules (MIMs). In particular, new types of pillar[n]arene-based MIMs that can dynamically convert between interlocked and unlocked states through unit rotation have been produced. The highly symmetrical pillar-shaped structures of pillar[n]arenes result in simple NMR spectra, which are useful for studying the motion of pillar[n]arene wheels in MIMs and creating sophisticated MIMs with higher-order structures. The creation and application of polymeric MIMs based on pillar[n]arenes is also discussed.
Collapse
Affiliation(s)
- Kenichi Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shunsuke Ohtani
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Tan-Hao Shi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Albert M Brouwer
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan. .,WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
7
|
Al-Azemi TF, Vinodh M. External-stimulus-triggered conformational inversion of mechanically self-locked pseudo[1]catenane and gemini-catenanes based on A1/A2-alkyne-azide-difunctionalized pillar[5]arenes. RSC Adv 2022; 12:1797-1806. [PMID: 35425178 PMCID: PMC8979204 DOI: 10.1039/d1ra09043g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, we report a methodology for constructing mechanically self-locked molecules (MSMs) through the efficient intramolecular copper(i)-catalyzed alkyne–azide cycloaddition (CuAAC) of self-threaded A1/A2-azido-propargyl-difunctionalized pillar[5]arenes. The obtained monomeric “pseudo[1]catenane” and dimeric “gemini-catenane” were isolated and fully characterized using mass spectrometry, nuclear magnetic resonance (NMR) spectroscopy, and X-ray crystallography. Upon investigation by 1H NMR spectroscopy in chloroform, the observed motion for the threaded ring in the pseudo[1]catenane was reversibly controlled by the temperature, as demonstrated by variable-temperature 1H NMR studies. Two gemini-catenane stereoisomers were also isolated in which the two pillar[5]arene moieties threaded by two decyl chains were aligned in different topologies. Furthermore, the conformational inversion of pseudo[1]catenane and the gemini-catenanes triggered by solvents and guests was investigated and probed using 1H NMR spectroscopy, isothermal titration calorimetry, and single-crystal X-ray analysis. Mechanically self-locked molecules (MSMs) through the efficient intramolecular copper(i)-catalyzed alkyne–azide cycloaddition (CuAAC) of self-threaded A1/A2-azido-propargyl-difunctionalized pillar[5]arenes.![]()
Collapse
Affiliation(s)
- Talal F Al-Azemi
- Chemistry Department, Kuwait University P.O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| | - Mickey Vinodh
- Chemistry Department, Kuwait University P.O. Box 5969, Safat 13060 Kuwait +965-2481-6482 +965-2498-554
| |
Collapse
|
8
|
Chen JF, Ding JD, Wei TB. Pillararenes: fascinating planar chiral macrocyclic arenes. Chem Commun (Camb) 2021; 57:9029-9039. [PMID: 34498646 DOI: 10.1039/d1cc03778a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chiral macrocycles possess significant value in chiral science and supramolecular chemistry. Pillararenes, as a class of relatively young supramolecular macrocyclic hosts, have been widely used for host-guest recognition and self-assembly. Since the position of substituents on the benzene rings breaks the molecular symmetry (symmetric plane and symmetric center), pillararenes possess planar chirality. However, it is a great challenge to synthesize stable and resolvable enantiomers because of the easy rotation of the phenylene group. In this review, we summarize the construction methods of resolvable chiral pillararenes. We also focus on their applications in enantioselective recognition, chiral switches, chirality sensing, asymmetric catalysis, circularly polarized luminescence, metal-organic frameworks, and highly permeable membranes. Finally, we discuss the future research perspectives in this field of pillararene-based planar chiral materials. We hope that this review will encourage more researchers to work in this exciting field.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Jin-Dong Ding
- Shaanxi Key Laboratory of National Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| |
Collapse
|
9
|
Affiliation(s)
- Arthur H. G. David
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310021 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
10
|
Wang Z, Chen T, Liu H, Zhao XL, Hu WB, Yang H, Liu YA, Wen K. Pillar[5]arene-Derived endo-Functionalized Molecular Tube for Mimicking Protein-Ligand Interactions. J Org Chem 2021; 86:6467-6477. [PMID: 33872006 DOI: 10.1021/acs.joc.1c00314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Artificial tubular molecular pockets bearing polar functionalities on their inner surface are useful model systems for understanding the mechanisms of protein-ligand interactions in living systems. We herein report a pillar[5]arene-derived molecular tube, [P4-(OH)BPO], whose endo conformational isomer endo-[P4-(OH)BPO] possesses an inwardly pointing hydrogen-bond (H-bond) donor (OH) in its deep cavity and a strong H-bond acceptor (C═O) on its predominantly hydrophobic inner surface, rendering it a perfect protein binding pocket mimetic. A fragment-based drug design model was established using endo-[P4-(OH)BPO] and a library of various shape-complementary fragment ligands (1-38). On the basis of the binding affinity data for "fragment-pocket" complexes G⊂endo-[P4-(OH)BPO] (G = 1-38), two rationally designed "lead molecules" (39 and 40) were identified as being able to enhance binding affinity significantly by forming H-bonds with both the donor and acceptor of endo-[P4-(OH)BPO]. The described work opens new avenues for developing pillar[n]arene-derived protein binding pocket-mimetic systems for studies of protein-ligand interactions and mechanisms of enzymatic reactions.
Collapse
Affiliation(s)
- Zhuo Wang
- Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Chen
- Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wei-Bo Hu
- Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China
| | - Hui Yang
- Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yahu A Liu
- Medicinal Chemistry, ChemBridge Research Laboratories, San Diego, California 92127, United States
| | - Ke Wen
- Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Yao J, Mizuno H, Xiao C, Wu W, Inoue Y, Yang C, Fukuhara G. Pressure-driven, solvation-directed planar chirality switching of cyclophano-pillar[5]arenes (molecular universal joints). Chem Sci 2021; 12:4361-4366. [PMID: 34168749 PMCID: PMC8179620 DOI: 10.1039/d0sc06988d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Planar chiral cyclophanopillar[5]arenes with a fused oligo(oxyethylene) or polymethylene subring (MUJs), existing as an equilibrium mixture of subring-included (in) and -excluded (out) conformers, respond to hydrostatic pressure to exhibit dynamic chiroptical property changes, leading to an unprecedented pressure-driven chirality inversion and the largest ever-reported leap of anisotropy (g) factor for the MUJ with a dodecamethylene subring. The pressure susceptivity of MUJs, assessed by the change in g per unit pressure, is a critical function of the size and nature of the subring incorporated and the solvent employed. Mechanistic elucidations reveal that the in-out equilibrium, as the origin of the MUJ's chiroptical property changes, is on a delicate balance of the competitive inclusion of subrings versus solvent molecules as well as the solvation of the excluded subring. The present results further encourage our use of pressure as a unique tool for dynamically manipulating various supramolecular devices/machines.
Collapse
Affiliation(s)
- Jiabin Yao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Hiroaki Mizuno
- Department of Chemistry, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Chao Xiao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Yoshihisa Inoue
- Department of Applied Chemistry, Osaka University Suita 565-0871 Japan
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, Healthy Food Evaluation Research Center, Sichuan University Chengdu 610064 China
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
12
|
Liang H, Hua B, Xu F, Gan LS, Shao L, Huang F. Acid/Base-Tunable Unimolecular Chirality Switching of a Pillar[5]azacrown Pseudo[1]Catenane. J Am Chem Soc 2020; 142:19772-19778. [DOI: 10.1021/jacs.0c10570] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Haozhong Liang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Bin Hua
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Fan Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Li-She Gan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People’s Republic of China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People’s Republic of China
| | - Li Shao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, People’s Republic of China
| |
Collapse
|
13
|
Du K, Demay-Drouhard P, Samanta K, Li S, Thikekar TU, Wang H, Guo M, van Lagen B, Zuilhof H, Sue ACH. Stereochemical Inversion of Rim-Differentiated Pillar[5]arene Molecular Swings. J Org Chem 2020; 85:11368-11374. [PMID: 32820630 PMCID: PMC7498154 DOI: 10.1021/acs.joc.0c01464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
To
investigate the dynamic stereochemical inversion behavior of
pillar[5]arenes (P[5]s) in more detail, we synthesized a series of
novel rim-differentiated P[5]s with various substituents and examined
their rapid rotations by variable-temperature NMR (203–298
K). These studies revealed for the first time the barrier of “methyl-through-the-annulus”
rotation (ΔG‡ = 47.4 kJ·mol–1 in acetone) and indicated that for rim-differentiated
P[5]s with two types of alkyl substituents, the smaller rim typically
determines the rate of rotation. However, substituents with terminal
C=C or C≡C bonds give rise to lower inversion barriers,
presumably as a result of attractive π–π interactions
in the transition state. Finally, data on a rim-differentiated penta-methyl-penta-propargyl
P[5] exhibited the complexity of the overall inversion dynamics.
Collapse
Affiliation(s)
- Ke Du
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Paul Demay-Drouhard
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6703 WE Wageningen, The Netherlands
| | - Kushal Samanta
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6703 WE Wageningen, The Netherlands
| | - Shunshun Li
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Tushar Ulhas Thikekar
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Haiying Wang
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Barend van Lagen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6703 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6703 WE Wageningen, The Netherlands.,Department of Chemical and Materials Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Andrew C-H Sue
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| |
Collapse
|
14
|
Xiao C, Wu W, Liang W, Zhou D, Kanagaraj K, Cheng G, Su D, Zhong Z, Chruma JJ, Yang C. Redox‐Triggered Chirality Switching and Guest‐Capture/Release with a Pillar[6]arene‐Based Molecular Universal Joint. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chao Xiao
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| | - Wenting Liang
- Institute of Environmental SciencesShanxi University China
| | - Dayang Zhou
- Comprehensive Analysis Center, ISIROsaka University Japan
| | - Kuppusamy Kanagaraj
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| | - Guo Cheng
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| | - Dan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| | - Zhihui Zhong
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| | - Jason J. Chruma
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of EducationCollege of ChemistryState Key Laboratory of Biotherapy, and Healthy Food Evaluation Research CenterSichuan University Chengdu 610064 China
| |
Collapse
|
15
|
Xiao C, Wu W, Liang W, Zhou D, Kanagaraj K, Cheng G, Su D, Zhong Z, Chruma JJ, Yang C. Redox-Triggered Chirality Switching and Guest-Capture/Release with a Pillar[6]arene-Based Molecular Universal Joint. Angew Chem Int Ed Engl 2020; 59:8094-8098. [PMID: 31958199 DOI: 10.1002/anie.201916285] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/18/2020] [Indexed: 11/05/2022]
Abstract
A chiral electrochemically responsive molecular universal joint (EMUJ) was synthesized by fusing a macrocyclic pillar[6]arene (P[6]) to a ferrocene-based side ring. A single crystal of an enantiopure EMUJ was successfully obtained, which allowed, for the first time, the definitive correlation between the absolute configuration and the circular dichroism spectrum of a P[6] derivative to be determined. The self-inclusion and self-exclusion conformational change of the EMUJ led to a chiroptical inversion of the P[6] moiety, which could be manipulated by both solvents and changes in temperature. The EMUJ also displayed a unique redox-triggered reversible in/out conformational switching, corresponding to an occupation/voidance switching of the P[6] cavity, respectively. This phenomenon is an unprecedented electrochemical manipulation of the capture and release of guest molecules by supramolecular hosts.
Collapse
Affiliation(s)
- Chao Xiao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| | - Wenting Liang
- Institute of Environmental Sciences, Shanxi University, China
| | - Dayang Zhou
- Comprehensive Analysis Center, ISIR, Osaka University, Japan
| | - Kuppusamy Kanagaraj
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| | - Guo Cheng
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| | - Dan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| | - Zhihui Zhong
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| | - Jason J Chruma
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
16
|
Chen Y, Fu L, Sun B, Qian C, Wang R, Jiang J, Lin C, Ma J, Wang L. Competitive Selection of Conformation Chirality of Water-Soluble Pillar[5]arene Induced by Amino Acid Derivatives. Org Lett 2020; 22:2266-2270. [PMID: 32109079 DOI: 10.1021/acs.orglett.0c00468] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The competitive conformation chirality of dynamically racemic water-soluble pillar[5]arene WP5 can be induced by 19 different l-amino acid ethyl ester hydrochlorides. Among them, l-Arg-OEt and 18 other l-amino acid ethyl ester hydrochlorides can induce the opposite-handedness conformation of WP5. This was ascribed to the different binding models with a side-chain moiety or ethyl ester moiety of amino acids toward the cavity of WP5.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lulu Fu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Baobao Sun
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng Qian
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Juli Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Lin
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Fa S, Kakuta T, Yamagishi TA, Ogoshi T. Conformation and Planar Chirality of Pillar[n]arenes. CHEM LETT 2019. [DOI: 10.1246/cl.190544] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shixin Fa
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takahiro Kakuta
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tada-aki Yamagishi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Tomoki Ogoshi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
18
|
Bravin C, Mason G, Licini G, Zonta C. A Diastereodynamic Probe Transducing Molecular Length into Chiroptical Readout. J Am Chem Soc 2019; 141:11963-11969. [DOI: 10.1021/jacs.9b04151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlo Bravin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| | - Giulia Mason
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| | - Giulia Licini
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| | - Cristiano Zonta
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy
| |
Collapse
|
19
|
Gibson HW, Huang F, Zhao R, Shao L, Zakharov LN, Slebodnick C, Rheingold AL. An Inhospitable Cryptand: The Importance of Conformational Freedom in Host-Guest Complexation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Harry W. Gibson
- Department of Chemistry; Virginia Tech; 24060 Blacksburg VA USA
| | - Feihe Huang
- Department of Chemistry; Virginia Tech; 24060 Blacksburg VA USA
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Zhejiang University; Hangzhou P R China
| | - Run Zhao
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Zhejiang University; Hangzhou P R China
| | - Li Shao
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Zhejiang University; Hangzhou P R China
| | - Lev N. Zakharov
- Department of Chemistry; University of California; 92093-0358 San Diego, La Jolla CA USA
| | | | - Arnold L. Rheingold
- Department of Chemistry; University of California; 92093-0358 San Diego, La Jolla CA USA
| |
Collapse
|
20
|
Resolution and Racemization of a Planar-Chiral A1/A2-Disubstituted Pillar[5]arene. Symmetry (Basel) 2019. [DOI: 10.3390/sym11060773] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Butoxycarbonyl (Boc)-protected pillar[4]arene[1]-diaminobenzene (BP) was synthesized by introducing the Boc protection onto the A1/A2 positions of BP. The oxygen-through-annulus rotation was partially inhibited because of the presence of the middle-sized Boc substituents. We succeeded in isolating the enantiopure RP (RP, RP, RP, RP, and RP)- and SP (SP, SP, SP, SP, and SP)-BP, and studied their circular dichroism (CD) spectral properties. As the Boc substituent is not large enough to completely prevent the flip of the benzene units, enantiopure BP-f1 underwent racemization in solution. It is found that the racemization kinetics is a function of the solvent and temperature employed. The chirality of the BP-f1 could be maintained in n-hexane and CH2Cl2 for a long period at room temperature, whereas increasing the temperature or using solvents that cannot enter into the cavity of BP-f1 accelerated the racemization of BP-f1. The racemization kinetics and the thermodynamic parameters of racemization were studied in several different organic solvents.
Collapse
|
21
|
Park J, Choi Y, Lee SS, Jung JH. Critical Role of Achiral Guest Molecules in Planar Chirality Inversion of Alanine-Appended Pillar[5]arenes. Org Lett 2019; 21:1232-1236. [PMID: 30730150 DOI: 10.1021/acs.orglett.9b00277] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Planar chirality inversion of pillar[5]arenes bearing d- or l-alanine substituents on both rims was investigated upon addition of guest molecules having pyridinium or imidazole moieties and long alkyl chains. The d- and l-alanine-substituted pillar[5]arenes exhibited pS and pR planar chirality, respectively. However, this planar chirality was inverted upon inclusion of certain achiral molecules, comprising pyridinium or imidazole moieties and long alkyl chains with terminal hydroxyl or methyl groups.
Collapse
Affiliation(s)
- Jaehyeon Park
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University , Jinju 52828 , Korea
| | - Yeonweon Choi
- Accident Prevention and Assessment Division 2 , National Institute of Chemical Safety , Daejeon 34111 , Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University , Jinju 52828 , Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University , Jinju 52828 , Korea
| |
Collapse
|
22
|
Lee E, Ryu H, Ju H, Kim S, Lee JE, Jung JH, Kuwahara S, Ikeda M, Habata Y, Lee SS. Pillar[5]-bis-thiacrown: An Adaptive Tricyclic Host Selectively Recognizing an Organic Guest by Dimetalation. Chemistry 2019; 25:949-953. [PMID: 30450626 DOI: 10.1002/chem.201805275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Some biological receptors change their shapes and rigidity by metalation to recognize substrates precisely via adaptive guest binding process. Herein we present a semi-flexible tricyclic host molecule whose conformation is rigidified by dimetalation to uptake organic guests selectively. Considering two metal binding sites and an empty space between them, pillar[5]-bis-thiacrown (L) was synthesized. The tricyclic host L forms a disilver(I) complex [Ag2 L(NO3 )2 ], with an Ag⋅⋅⋅Ag separation of 9.976 Å. Binding studies based on 1 H NMR including 2D NOESY and DOSY experiments towards α,ω-dicyanoalkanes [CN(CH2 )n CN, n=2-6, shortly C2-C6] demonstrated that the dimetalated L, Ag2 L preferentially recognizes C2 over other guests than that of free L. Furthermore, the dimetalated the host only uptakes C2 in the presence of other guests. Crystal structures support the idea that the space between two silver(I) centers plays a decisive role on the selective guest binding forming an Ag-C2-Ag@L arrangement via the length-selective recognition. This work demonstrates the chemical example of the adaptive guest binding and presents a new perspective on the metallosupramolecules of pillararenes.
Collapse
Affiliation(s)
- Eunji Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyunsoo Ryu
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Huiyeong Ju
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Seulgi Kim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Ji-Eun Lee
- Center for Research Facilities, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Shunsuke Kuwahara
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Mari Ikeda
- Department of Chemistry, Education Center, Faculty of Engineering, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba, 275-0023, Japan
| | - Yoichi Habata
- Department of Chemistry, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju, 52828, South Korea
| |
Collapse
|
23
|
Lee E, Ju H, Park IH, Jung JH, Ikeda M, Kuwahara S, Habata Y, Lee SS. pseudo[1]Catenane-Type Pillar[5]thiacrown Whose Planar Chiral Inversion is Triggered by Metal Cation and Controlled by Anion. J Am Chem Soc 2018; 140:9669-9677. [DOI: 10.1021/jacs.8b05751] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Eunji Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, S. Korea
| | - Huiyeong Ju
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, S. Korea
| | - In-Hyeok Park
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, S. Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, S. Korea
| | - Mari Ikeda
- Department of Chemistry, Education Center, Faculty of Engineering, Chiba Institute of Technology, 2-1-1 Shibazono, Narashino, Chiba 275-0023, Japan
| | - Shunsuke Kuwahara
- Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Yoichi Habata
- Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, S. Korea
| |
Collapse
|