1
|
Arumugam A, Senadi GC. Visible-light photocatalyzed C-N bond activation of tertiary amines: a three-component approach to synthesize quinazolines. Org Biomol Chem 2024; 22:1245-1253. [PMID: 38248577 DOI: 10.1039/d3ob02067c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A metal-free three-component approach has been developed to prepare 2,4-disubstituted quinazolines from o-acylanilines, trialkylamines and ammonium chloride under visible-light using eosin Y as the photocatalyst. The notable features of this work include (i) the use of tertiary amines as an alkyl synthon and triethanolamine as a C2-OH synthon; (ii) good functional group tolerance with 52%-98% yields; (iii) proof of concept with o-amino benzaldehyde as a substrate to deliver 2-methyl quinazoline 3pa; and (iv) gram-scale synthesis of compounds 3ga, 3ja and 3ma. A reductive quenching mechanism was proposed based on the control studies and redox potential values.
Collapse
Affiliation(s)
- Ajithkumar Arumugam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Gopal Chandru Senadi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhang FG, Chen Z, Tang X, Ma JA. Triazines: Syntheses and Inverse Electron-demand Diels-Alder Reactions. Chem Rev 2021; 121:14555-14593. [PMID: 34586777 DOI: 10.1021/acs.chemrev.1c00611] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Triazines are an important class of six-membered aromatic heterocycles possessing three nitrogen atoms, resulting in three types of regio-isomers: 1,2,4-triazines (a-triazines), 1,2,3-triazines (v-triazines), and 1,3,5-triazines (s-triazines). Notably, the application of triazines as cyclic aza-dienes in inverse electron-demand Diels-Alder (IEDDA) cycloaddition reactions has been established as a unique and powerful method in N-heterocycle synthesis, natural product preparation, and bioorthogonal chemistry. In this review, we comprehensively summarize the advances in the construction of these triazines via annulation and ring-expansion reactions, especially emphasizing recent developments and challenges. The synthetic transformations of triazines are focused on IEDDA cycloaddition reactions, which have allowed access to a wide scope of heterocycles, including pyridines, carbolines, azepines, pyridazines, pyrazines, and pyrimidines. The utilization of triazine IEDDA reactions as key steps in natural product synthesis is also discussed. More importantly, a particular attention is paid on the bioorthogonal application of triazines in fast click ligation with various strained alkenes and alkynes, which opens a new opportunity for studying biomolecules in chemical biology.
Collapse
Affiliation(s)
- Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Zhen Chen
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Xiaodong Tang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
3
|
Xu J, Ding A, Zhang Y, Guo H. Photochemical Synthesis of 1,4-Dicarbonyl Bifluorene Compounds via Oxidative Radical Coupling Using TEMPO as the Oxygen Atom Donor. J Org Chem 2021; 86:3656-3666. [PMID: 33513019 DOI: 10.1021/acs.joc.0c02781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A visible-light-induced metal-free synthesis of 1,4-dicarbonyl compounds from alkyne-containing aryl iodides via photochemical C-I bond cleavage, intramolecular cyclization, oxidation, and intermolecular radical coupling sequence is reported. TEMPO was employed as the oxygen atom donor in this transformation. This protocol provided a new strategy for the synthesis of 1,4-dicarbonyl bifluorene compounds.
Collapse
Affiliation(s)
- Jincheng Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Aishun Ding
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yanbin Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
4
|
Zhou Z, Hu K, Wang J, Li Z, Zhang Y, Zha Z, Wang Z. Electrosynthesis of Quinazolines and Quinazolinones via an Anodic Direct Oxidation C(sp 3)-H Amination/C-N Cleavage of Tertiary Amine in Aqueous Medium. ACS OMEGA 2020; 5:31963-31973. [PMID: 33344851 PMCID: PMC7745442 DOI: 10.1021/acsomega.0c04865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 05/07/2023]
Abstract
An electrochemical synthesis for quinazolines and quinazolinones was developed via a C(sp3)-H amination/C-N cleavage by virtue of the anodic oxidation. The reaction can be carried out in aqueous media under mild conditions to afford the desired products with high yields. The reaction mechanism was proposed after detailed investigation.
Collapse
|
5
|
Yan Y, Li S, Wang J. Oxidative Alkoxylation/Dehydrogenation of Unactivated Cyclic Ketones with Simple Alcohols: Direct Route to α‐Alkoxy Cycloenones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yizhe Yan
- School of Food and Biological Engineering Henan Collaborative Innovation Center of Food Production and Safety Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou University of Light Industry 450000 Zhengzhou P. R. China
| | - Shaoqing Li
- School of Food and Biological Engineering Henan Collaborative Innovation Center of Food Production and Safety Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou University of Light Industry 450000 Zhengzhou P. R. China
| | - Jianyong Wang
- School of Light Industry and Engineering Qilu University of Technology (Shandong Academy of Sciences) 250353 Jinan P. R. China
| |
Collapse
|
6
|
Zhao P, Zhou Y, Yu XX, Huang C, Wu YD, Yin G, Wu AX. Iodine-Promoted Multicomponent Synthesis of 2,4-Diamino-1,3,5-triazines. Org Lett 2020; 22:8528-8532. [PMID: 33047965 DOI: 10.1021/acs.orglett.0c03130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A novel and efficient multicomponent cyclization of methyl ketones, cyanamides, and arylamines for the synthesizing 2,4-diamino-1,3,5-triazines via consecutive formation of four C-N bonds is reported. This multicomponent reaction is characterized by the employment of two molecules of cyanamide for double C(sp3)-H amination of methyl ketones, avoiding complicated prepreparation of substrates and expanding the substrate scope. Furthermore, this multicomponent cyclization strategy provides a new approach for generating diverse 2,4-diamino-1,3,5-triazines with a broad substrate scope under mild conditions.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - You Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Xiao-Xiao Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Chun Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Guodong Yin
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, P.R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
7
|
Yan M, Ma R, Chen R, Wang L, Wang Z, Ma Y. Synthesis of 1,2-dihydro-1,3,5-triazine derivatives via Cu(II)-catalyzed C(sp 3)-H activation of N, N-dimethylethanolamine with amidines. Chem Commun (Camb) 2020; 56:10946-10949. [PMID: 32940285 DOI: 10.1039/d0cc03820b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1,2-Dihydro-1,3,5-triazines and symmetrical 1,3,5-triazines were obtained in up to 81% yields from amidines and N,N-dimethylethanolamine catalyzed by CuCl2. The reaction involves three C-N bond formations during the oxidative annulation process and the mechanism was proposed. This efficient synthesis of 1,2-dihydro-1,3,5-triazines was developed for the first time.
Collapse
Affiliation(s)
- Min Yan
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China. and School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| | - Renchao Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China.
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China.
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China.
| | - Zhiming Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China.
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, P. R. China. and School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, P. R. China
| |
Collapse
|
8
|
Gao Q, Wu M, Zhang K, Yang N, Liu M, Li J, Fang L, Bai S, Xu Y. I2-Catalyzed Aerobic α,β-Dehydrogenation and Deamination of Tertiary Alkylamines: Highly Selective Synthesis of Polysubstituted Pyrimidines via Hidden Acyclic Enamines. Org Lett 2020; 22:5645-5649. [DOI: 10.1021/acs.orglett.0c02001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Manman Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ke Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ning Yang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Mengting Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Juan Li
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yongtao Xu
- School of Medical Engineering, Xinxiang Key Laboratory of Biomedical Information Research, Henan Engineering Laboratory of Combinatorial Technique for Clinical and Biomedical Big Data, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
9
|
Xiao J, Ren S, Liu Q. Atom-efficient synthesis of 2,4,6-trisubstituted 1,3,5-triazines via Fe-catalyzed cyclization of aldehydes with NH 4I as the sole nitrogen source. RSC Adv 2020; 10:22230-22233. [PMID: 35516622 PMCID: PMC9054497 DOI: 10.1039/d0ra03323e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/01/2020] [Indexed: 12/26/2022] Open
Abstract
An atom-efficient, straightforward method for the synthesis of 2,4,6-triaryl-1,3,5-triazines via iron-catalyzed cyclization of aldehydes with NH4I as the sole nitrogen source is demonstrated. This strategy works smoothly under air atmosphere, and affords symmetrical 2,4,6-trisubstituted and unsymmetrical 1,3,5-triazines with yields from 18% to 72%. Compared to other methods, the present protocol provides a straightforward and atom-efficient approach to 2,4,6-trisubstituted 1,3,5-triazines using an inexpensive, easily available ammonium salt as the sole nitrogen source. Research into the preliminary mechanism indicates that N-benzylidenebenzimidamides are involved in this cyclization reaction. An atom-efficient, straightforward method for the synthesis of 2,4,6-triaryl-1,3,5-triazines via iron-catalyzed cyclization of aldehydes with NH4I as the sole nitrogen source is demonstrated.![]()
Collapse
Affiliation(s)
- Jiang Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P.R. China
| | - Shuang Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P.R. China
| | - Qiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P.R. China
| |
Collapse
|
10
|
Zhang J, Zheng T, Zhang J. I2
/K2
S2
O8
Mediated Direct Oxidative Annulation of Alkylazaarenes with Amidines for the Synthesis of Substituted 1,3,5-Triazines. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule; College of Chemistry & Materials Science; Northwest University; 710127 Xi'an Shaanxi P. R. China
| | - Tingting Zheng
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule; College of Chemistry & Materials Science; Northwest University; 710127 Xi'an Shaanxi P. R. China
| | - Jidong Zhang
- School of Chemistry & Chemical Engineering; Ankang University; 725000 Ankang Shaanxi P. R. China
| |
Collapse
|
11
|
Niu B, Li S, Cui C, Yan Y, Tang L, Wang J. New Strategy for the Synthesis of Heterocycles via Copper-Catalyzed Oxidative Decarboxylative Amination of Glyoxylic Acid. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Niu
- School of Food and Biological Engineering; Henan Collaborative Innovation Center of Food Production and Safety; Henan Key Laboratory of Cold Chain Food Quality and Safety Control; Zhengzhou University of Light Industry; 450000 Zhengzhou P. R. China
| | - Shaoqing Li
- School of Food and Biological Engineering; Henan Collaborative Innovation Center of Food Production and Safety; Henan Key Laboratory of Cold Chain Food Quality and Safety Control; Zhengzhou University of Light Industry; 450000 Zhengzhou P. R. China
| | - Chang Cui
- School of Food and Biological Engineering; Henan Collaborative Innovation Center of Food Production and Safety; Henan Key Laboratory of Cold Chain Food Quality and Safety Control; Zhengzhou University of Light Industry; 450000 Zhengzhou P. R. China
| | - Yizhe Yan
- School of Food and Biological Engineering; Henan Collaborative Innovation Center of Food Production and Safety; Henan Key Laboratory of Cold Chain Food Quality and Safety Control; Zhengzhou University of Light Industry; 450000 Zhengzhou P. R. China
| | - Lin Tang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang P. R. China
| | - Jianyong Wang
- School of Light Industry and Engineering; Qilu University of Technology (Shandong Academy of Sciences); 250353 Jinan P. R. China
| |
Collapse
|
12
|
Guo W, Zhao M, Du C, Zheng L, Li L, Chen L, Tao K, Tan W, Xie Z, Cai L, Fan X, Zhang K. Visible-Light-Catalyzed [3 + 1 + 2] Coupling Annulations for the Synthesis of Unsymmetrical Trisubstituted Amino-1,3,5-triazines. J Org Chem 2019; 84:15508-15519. [DOI: 10.1021/acs.joc.9b02514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Mingming Zhao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Chengtang Du
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Luo Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liping Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Kailiang Tao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Wen Tan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Zhen Xie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Kai Zhang
- School of Chemistry and Chemical Engineering, Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huangzhou 438000, China
| |
Collapse
|
13
|
Yan Y, Cui C, Wang J, Li S, Tang L, Liu Y. Transition metal-free C-F/C-Cl/C-C cleavage of ClCF 2COONa for the synthesis of heterocycles. Org Biomol Chem 2019; 17:8071-8074. [PMID: 31464338 DOI: 10.1039/c9ob01641d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A transition metal-free and external oxidant-free annulation of substrates having two nitrogen-nucleophilic sites with ClCF2COONa was demonstrated, affording a series of 1,3,5-triazines and quinazolinones in up to 96% yields. Notably, ClCF2COONa was employed as the C1 synthon for valuable heterocycles. Using this protocol, two C-N bonds were formed in one pot via the cleavage of two C-F bonds, one C-Cl bond and one C-C bond. This method avoided the use of a transition metal and an oxidant and generated low toxicity inorganic waste.
Collapse
Affiliation(s)
- Yizhe Yan
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, 450000, P. R. China.
| | - Chang Cui
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, 450000, P. R. China.
| | - Jianyong Wang
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Shaoqing Li
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, 450000, P. R. China.
| | - Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Yanqi Liu
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou, 450000, P. R. China.
| |
Collapse
|
14
|
Yan Y, Cui C, Wang J, Li S, Liu Y. Dichloromethane as C1 Building Block: Synthesis of 2,4-Disubstitued 1,3,5-Triazines via Copper-Catalyzed Aerobic C−H/C−Cl Cleavage. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801583] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yizhe Yan
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control; Zhengzhou University of Light Industry; Zhengzhou 450000 People's Republic of China
| | - Chang Cui
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control; Zhengzhou University of Light Industry; Zhengzhou 450000 People's Republic of China
| | - Jianyong Wang
- School of Light Industry and Engineering; Qilu University of Technology (Shandong Academy of Sciences); Jinan 250353 People's Republic of China
| | - Shaoqing Li
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control; Zhengzhou University of Light Industry; Zhengzhou 450000 People's Republic of China
| | - Yanqi Liu
- School of Food and Biological Engineering, Henan Collaborative Innovation Center of Food Production and Safety, Henan Key Laboratory of Cold Chain Food Quality and Safety Control; Zhengzhou University of Light Industry; Zhengzhou 450000 People's Republic of China
| |
Collapse
|
15
|
Guo W, Zhao M, Tan W, Zheng L, Tao K, Fan X. Developments towards synthesis of N-heterocycles from amidines via C–N/C–C bond formation. Org Chem Front 2019. [DOI: 10.1039/c9qo00283a] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on the synthesis of N-heterocycles using amidines as starting materials, with an emphasis on the mechanisms of these reactions via C–N/C–C bond formation.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Mingming Zhao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Wen Tan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Xiaolin Fan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| |
Collapse
|
16
|
Yu X, Zhou Y, Ma X, Song Q. Transition metal-free assembly of 1,3,5-triazines using ethyl bromodifluoroacetate as C1 source. Chem Commun (Camb) 2019; 55:8079-8082. [DOI: 10.1039/c9cc03534f] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition-metal and oxidant-free annulation of amidine to access 2,4-disubstituted-1,3,5-triazines using ethyl bromodifluoroacetate as C1 source via quadruple cleavage.
Collapse
Affiliation(s)
- Xiaoxia Yu
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering and College of Materials Science & Engineering at Huaqiao University
- Xiamen
- P. R. China
| | - Yao Zhou
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering and College of Materials Science & Engineering at Huaqiao University
- Xiamen
- P. R. China
| | - Xingxing Ma
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering and College of Materials Science & Engineering at Huaqiao University
- Xiamen
- P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation
- College of Chemical Engineering and College of Materials Science & Engineering at Huaqiao University
- Xiamen
- P. R. China
- College of Chemistry
| |
Collapse
|