1
|
Wu LT, Diao H, Wu Y, Shu JS, He ZY, Xu P, Chen SQ, Li P, Zhang Z, Xu H. Synthesis of Highly Functionalized Indolizines via NIS-Promoted Spiroannulation/Ring-Opening Aromatization of Alkylidene Oxindoles with 2-(Pyridin-2-yl)acetate Derivatives. J Org Chem 2025; 90:4046-4053. [PMID: 40062558 DOI: 10.1021/acs.joc.5c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
A novel NIS-promoted domino reaction of alkylidene oxindoles with 2-(pyridin-2-yl)acetate derivatives has been established, enabling the efficient and straightforward synthesis of a vast variety of highly functionalized indolizines via sequential spiroannulation and ring-opening aromatization processes. The protocol features mild reaction conditions, broad substrate scope, high efficiency, scalability, and applicability for the preparation of CF3-containing indolizines. Furthermore, the functional groups in the indolizine framework provide the feasibility for follow-up derivatization. Based on mechanistic studies, a plausible radical mechanism is proposed to elucidate the formation of indolizines.
Collapse
Affiliation(s)
- Luan-Ting Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Honglin Diao
- Technology Center, China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, P. R. China
| | - Yi Wu
- Technology Center, China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, P. R. China
| | - Jun-Sheng Shu
- Technology Center, China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, P. R. China
| | - Zeng-Yang He
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
- Technology Center, China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, P. R. China
| | - Peng Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Si-Qi Chen
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Pinhua Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ze Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
2
|
Zhang T, Feng H. Skeletal Editing of Isatins for Heterocycle Molecular Diversity. CHEM REC 2024; 24:e202400024. [PMID: 38847062 DOI: 10.1002/tcr.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 06/28/2024]
Abstract
Isatins have been widely used in the preparation of a variety of heterocyclic compounds, where the skeletal editing of isatins has shown significant advantages for the construction of diverse heterocycles. This review highlights the progress made in the last decade (2013-2023) in the skeletal editing of the isatin scaffold. A series of ring expansion reactions for the construction of quinoline skeleton, quinolone skeleton, polycyclic quinazoline skeleton, medium-sized ring skeleton, as well as a series of ring opening reactions for the generation of 2-(azoly)aniline skeleton by the cleavage of C-C bond and C-N bond are highlighted. It is hoped that this review will provide some understanding of the chemical transformations of isatins and contribute to the further realization of its molecular diversity.
Collapse
Affiliation(s)
- Tiantian Zhang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
3
|
Liu B, Deng Q, Zhang L, Yu A, Meng X. Switchable C2/C3 positional selectivity of thioisatins in a three-component domino reaction: combined computational and experimental studies. Org Biomol Chem 2022; 20:9639-9644. [PMID: 36411991 DOI: 10.1039/d2ob01764d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The nucleophile-induced domino reaction is a featured reactivity mode of thioisatin, but the C2/C3 positional selectivity towards a nucleophile has not been understood in-depth. In this work, a domino reaction of thioisatin with bromoacetophenone and tryptamine hydrochloride to produce a benzothiophene-fused eight-membered N-heterocycle was described, showing that the Brønsted acid-base form of the amine partner was crucial for the selectivity, because using tryptamine instead of tryptamine hydrochloride gave a different product. Control experiments and density functional calculations revealed that the domino reaction using tryptamine or tryptamine hydrochloride was triggered by a condensation reaction at the C2 or C3 position of thioisatin, respectively. A delicate balance between local electrophilicity and polarization effect may be responsible for the observed selectivity.
Collapse
Affiliation(s)
- Baolin Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science Tianjin Chengjian University, Tianjin 300384, P.R. China.
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China.
| |
Collapse
|
4
|
Jain S, Kumawat J, Jain P, Shruti, Malik P, Dwivedi J, Kishore D. Metal-catalyzed synthesis of triazine derivatives. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Wu XF, Chen Z, Liu L, zhang Y, Yang Z. Copper‐Catalyzed Decarbonylative Cyclization of Isatins and Trifluoroacetimidohydrazides for the Synthesis of 2‐(5‐Trifluoromethyl‐1,2,4‐triazol‐3‐yl)anilines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Zhang FG, Chen Z, Tang X, Ma JA. Triazines: Syntheses and Inverse Electron-demand Diels-Alder Reactions. Chem Rev 2021; 121:14555-14593. [PMID: 34586777 DOI: 10.1021/acs.chemrev.1c00611] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Triazines are an important class of six-membered aromatic heterocycles possessing three nitrogen atoms, resulting in three types of regio-isomers: 1,2,4-triazines (a-triazines), 1,2,3-triazines (v-triazines), and 1,3,5-triazines (s-triazines). Notably, the application of triazines as cyclic aza-dienes in inverse electron-demand Diels-Alder (IEDDA) cycloaddition reactions has been established as a unique and powerful method in N-heterocycle synthesis, natural product preparation, and bioorthogonal chemistry. In this review, we comprehensively summarize the advances in the construction of these triazines via annulation and ring-expansion reactions, especially emphasizing recent developments and challenges. The synthetic transformations of triazines are focused on IEDDA cycloaddition reactions, which have allowed access to a wide scope of heterocycles, including pyridines, carbolines, azepines, pyridazines, pyrazines, and pyrimidines. The utilization of triazine IEDDA reactions as key steps in natural product synthesis is also discussed. More importantly, a particular attention is paid on the bioorthogonal application of triazines in fast click ligation with various strained alkenes and alkynes, which opens a new opportunity for studying biomolecules in chemical biology.
Collapse
Affiliation(s)
- Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Zhen Chen
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Xiaodong Tang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
7
|
Xu L, Zhang WH, Cui ZS, Zhang ZH. Choline Chloride/Glycerol Promoted Synthesis of 3,3-Disubstituted Indol-2-ones. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337207999210104223005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
3,3-Disubstituted indol-2-one derivatives have wider applications in pharmaceuticals and they are key intermediates for the synthesis of many kinds of drug candidates. The development of an efficient and practical method to prepare this class of compound is highly desirable from both environmental and economical points of views.
Methods:
In order to establish an effective synthetic method for preparing 3,3-disubstituted indol-2-one derivatives, the bis-condensation reaction of isatin and 1H-indene-1,3(2H)-dione was selected as a model reaction. A variety of natural deep eutectic solvent (NADES) were prepared and used for this reaction. The generality and limitation of the established method were also investigated.
Results:
It was found that model reaction can be carried out in natural deep eutectic solvent (NADES) based on choline chloride (ChCl) at 80 oC under microwave irradiation. This protocol with a broad substrate applicability afforded various 2,2'-(2-oxoindoline-3,3-diyl)bis(1H-indene-1,3(2H)-dione) derivatives in high yields.
Conclusion:
simple and efficient procedure has been developed for synthesis of 2,2'-(2-oxoindoline-3,3-diyl)bis(1H-indene-1,3(2H)-dione), spiro[indoline-3,7'-pyrano[5,6-c:5,6-c']dichromene]-2,6',8'-trione, and spiro[indoline-3,9'-xan-thene] trione via bis-condensation between isatin with 1,3-indandione, 4-hydroxycoumarin or 1,3-cyclohexanedione in nat-ural deep eutectic solvent (NADES) based on choline chloride (ChCl) and glycerol (Gl) under microwave irradiation. The salient features of this protocol are avoidance of any additive/catalyst and toxic organic solvent, clean reaction profiles, non-chromatographic purification procedure, and high to excellent yield. Furthermore, the use of NADES as green reaction medium reduces burden on environment and makes the present method environmentally sustainable.
Collapse
Affiliation(s)
- Ling Xu
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024,, China
| | - Wei-Hong Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024,, China
| | - Zhen-Shui Cui
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024,, China
| | - Zhan-Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024,, China
| |
Collapse
|
8
|
Shen J, Zhang L, Meng X. Recent advances in cyclization reactions of isatins or thioisatins via C–N or C–S bond cleavage. Org Chem Front 2021. [DOI: 10.1039/d1qo00868d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarizes recent developments on cyclization reactions induced by the C–N or C–S bond cleavage of isatins or thioisatins in the last 5 years, which produce fused products instead of spiro compounds.
Collapse
Affiliation(s)
- Jinhui Shen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
9
|
Luo N, Sun ZW, Xu XX, Hu XQ, Jia FC. A transition-metal-free, base-promoted annulation/ring-cleavage/ring-reconstruction cascade reaction: a facile access to N-protection free indole-indenones. Org Chem Front 2021. [DOI: 10.1039/d1qo01280k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented base-promoted reaction of 2-halogenated arylglyoxals with 2-oxindoles is accomplished under metal-free conditions, furnishing a wide range of biologically important (NH)-indeno[2,1-b]indol-6(5H)-ones in useful to good yields.
Collapse
Affiliation(s)
- Na Luo
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Zhen-Wei Sun
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xing-Xin Xu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Feng-Cheng Jia
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
10
|
Wang LC, Du S, Chen Z, Wu XF. FeCl 3-Mediated Synthesis of 2-(Trifluoromethyl)quinazolin-4(3 H)-ones from Isatins and Trifluoroacetimidoyl Chlorides. Org Lett 2020; 22:5567-5571. [PMID: 32610908 DOI: 10.1021/acs.orglett.0c01927] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An FeCl3-mediated cascade coupling/decarbonylative annulation reaction for the efficient construction of 2-(trifluoromethyl)quinazolin-4(3H)-ones has been developed. This transformation employs readily available isatins and trifluoroacetimidoyl chlorides as the starting materials, providing a facile and practical route to diverse biologically relevant quinazolin-4(3H)-one derivatives. A plausible reaction pathway has been proposed based on the mechanistic observations.
Collapse
Affiliation(s)
- Le-Cheng Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Shiying Du
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.,Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Rostock, 18059, Germany
| |
Collapse
|
11
|
Singh M, Vaishali, Paul AK, Singh V. Isatin as a 2-aminobenzaldehyde surrogate: transition metal-free efficient synthesis of 2-(2'-aminophenyl)benzothiazole derivatives. Org Biomol Chem 2020; 18:4459-4469. [PMID: 32490470 DOI: 10.1039/d0ob00888e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition metal-free, convenient, and efficient practical approach has been devised for the synthesis of substituted 2-(2'-aminophenyl)benzothiazoles via a sulfur insertion strategy using isatin derivatives as 2-aminobenzaldehyde surrogates. KI assisted one-pot operation of isatin, arylamines and elemental sulfur resulted in the formation of a C-N and two C-S bonds and cascade cleavage of the isatin ring resulting in the formation of 2-(2'-aminophenyl)benzothiazoles. The significant features of this strategy are the readily available and inexpensive starting materials, broad substrate scope, sustainable reaction conditions and high yield of products. Importantly, the strategy was found to be appropriate for gram scale synthesis (>10 g) of 2-(2'-aminophenyl)benzothiazole derivatives. Moreover, the excellent photophysical properties (ΦF up to 60%) of 2-(2'-aminophenyl)benzothiazole derivatives provide huge scope in materials science.
Collapse
Affiliation(s)
- Manpreet Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144011, Punjab, India.
| | - Vaishali
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144011, Punjab, India.
| | - Avijit Kumar Paul
- Department of Chemistry, National Institute of Technology (NIT) Kurukshetra, 136119, Haryana, India
| | - Virender Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144011, Punjab, India. and Department of Chemistry, Central University of Punjab, Bathinda, 151001, Punjab, India. virender.singh.cup.edu.in
| |
Collapse
|
12
|
Zhang J, Zheng T, Zhang J. I2
/K2
S2
O8
Mediated Direct Oxidative Annulation of Alkylazaarenes with Amidines for the Synthesis of Substituted 1,3,5-Triazines. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Zhang
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule; College of Chemistry & Materials Science; Northwest University; 710127 Xi'an Shaanxi P. R. China
| | - Tingting Zheng
- Ministry of Education Key Laboratory of Synthetic and Natural Functional Molecule; College of Chemistry & Materials Science; Northwest University; 710127 Xi'an Shaanxi P. R. China
| | - Jidong Zhang
- School of Chemistry & Chemical Engineering; Ankang University; 725000 Ankang Shaanxi P. R. China
| |
Collapse
|
13
|
Ghosh A, Kolle S, Barak DS, Kant R, Batra S. Multicomponent Reaction for the Synthesis of 5,6-Dihydropyrrolo[2,1- a]isoquinolines. ACS OMEGA 2019; 4:20854-20867. [PMID: 31858071 PMCID: PMC6906948 DOI: 10.1021/acsomega.9b03546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/13/2019] [Indexed: 05/08/2023]
Abstract
A multicomponent reaction between isatin, tetrahydroisoquinoline, and terminal alkyne in the presence of benzoic acid for the synthesis of N-(substituted-2-(2-phenyl-5,6-dihydropyrrolo[2,1-a]isoquinolin-3-yl)phenyl)-3,4-dihydroisoquinoline-2(1H)-carboxamides is described. This three-component reaction proceeds via sequential formation of spirooxindole, generation of isocyanate functionality via cleavage of the C2-C3 bond in the isatin subunit of spirooxindole, and addition of the second molecule of tetrahydroisoquinoline to the isocyanate group to offer title compounds. Expansion of the protocol to four-component by including an additional primary amine affords 1-substituted-3-(2-(2-phenyl-5,6-dihydropyrrolo[2,1-a]isoquinolin-3-yl)phenyl)urea in low to moderate yields. However, the reaction of intermediate spirooxindole with tetrahydroisoquinoline or any primary or secondary amine produced the title compound in excellent yields.
Collapse
Affiliation(s)
- Aritra Ghosh
- Medicinal
and Process Chemistry Division and Molecular and Structural Biology
Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
- Academy
of Scientific and Innovative Research, CSIR-
Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Shivalinga Kolle
- Medicinal
and Process Chemistry Division and Molecular and Structural Biology
Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Dinesh S. Barak
- Medicinal
and Process Chemistry Division and Molecular and Structural Biology
Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Ruchir Kant
- Medicinal
and Process Chemistry Division and Molecular and Structural Biology
Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
| | - Sanjay Batra
- Medicinal
and Process Chemistry Division and Molecular and Structural Biology
Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension,
Sitapur Road, Lucknow 226031, India
- Academy
of Scientific and Innovative Research, CSIR-
Human Resource Development Centre, (CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
- E-mail: ; . Tel. +91-522-2772450 xtn 4727
| |
Collapse
|
14
|
Wang YW, Zheng L, Jia FC, Chen YF, Wu AX. Oxidative ring-opening of isatins for the synthesis of 2-aminobenzamides and 2-aminobenzoates. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Jiang SF, Xu C, Zhou ZW, Zhang Q, Wen XH, Jia FC, Wu AX. Switchable Access to 3-Carboxylate-4-quinolones and 1-Vinyl-3-carboxylate-4-quinolones via Oxidative Cyclization of Isatins and Alkynes. Org Lett 2018; 20:4231-4234. [DOI: 10.1021/acs.orglett.8b01645] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shi-Fen Jiang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Cheng Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Wen Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qin Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Hui Wen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Feng-Cheng Jia
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
16
|
Li PG, Yan C, Zhu S, Liu SH, Zou LH. Direct construction of benzimidazo[l,2-c]quinazolin-6-ones via metal-free oxidative C–C bond cleavage. Org Chem Front 2018. [DOI: 10.1039/c8qo01039k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly regioselective protocol has been developed for the synthesis of benzimidazo[l,2-c]quinazolin-6-ones via C–C bond cleavage and triple C–N bond formation.
Collapse
Affiliation(s)
- Ping-Gui Li
- School of Pharmaceutical Science
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
| | - Cheng Yan
- School of Pharmaceutical Science
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
| | - Shuai Zhu
- School of Pharmaceutical Science
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
| | - Shu-Hui Liu
- School of Pharmaceutical Science
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
| | - Liang-Hua Zou
- School of Pharmaceutical Science
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
| |
Collapse
|