1
|
Zhao L, Huang Z, Meng H, Liang Q, Su XC, Xuan W. Site-Specific Protein Modification via Reductive Amination of Genetically Encoded Aldehyde. Bioconjug Chem 2025; 36:377-382. [PMID: 39963974 DOI: 10.1021/acs.bioconjchem.4c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Aldehyde represents an extremely useful bio-orthogonal group in chemical biology and has promoted the generation of high-quality bioconjugates in therapeutics development. However, the installation of an aldehyde group on a protein and subsequent conjugation remains technically inadequate in the aspect of site choice, substrate availability, and linkage stability. Herein, we take efforts to advance the genetic incorporation of an aldehyde-containing noncanonical amino acid in E. coli and then show that reductive amination could be a useful reaction in introducing various amine-containing molecules, including peptides, into a specific site of proteins.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Zhifen Huang
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Haonan Meng
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Qianzhi Liang
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xun-Cheng Su
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weimin Xuan
- State Key Laboratory of Synthetic Biology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Cai N, Zhan X, Chen Y, Xue J, Chen C, Li Y, Tian Y, Yan X. Surface Sialic Acid Detection of Small Extracellular Vesicles at the Single-Particle Level by Nano-Flow Cytometry. Anal Chem 2024; 96:12718-12728. [PMID: 39047233 DOI: 10.1021/acs.analchem.4c01763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Glycans, particularly sialic acids (SAs), play crucial roles in diverse biological processes. Despite their significance, analyzing specific glycans, such as sialic acids, on individual small extracellular vesicles (sEVs) has remained challenging due to the limited glycan capacity and substantial heterogeneity of sEVs. To tackle this issue, we introduce a chemical modification method of surface SAs on sEVs named PALEV-nFCM, which involves periodate oxidation and aniline-catalyzed oxime ligation (PAL), in conjunction with single-particle analysis using a laboratory-built nano-flow cytometer (nFCM). The specificity of the PALEV labeling method was validated using SA-decorated liposomes, enzymatic removal of terminal SA residues, lectin preblocking, and cellular treatment with an endogenous sialyltransferase inhibitor. Comprehensive mapping of SA distributions was conducted for sEVs derived from different sources, including conditioned cell culture medium (CCCM) of various cell lines, human saliva, and human red blood cells (RBCs). Notably, treatment with the calcium ionophore substantially increases the population of SA-positive RBC sEVs and enhances the SA content on individual RBC sEVs as well. nFCM provides a sensitive and versatile platform for mapping SAs of individual sEVs, which could significantly contribute to resolving the heterogeneity of sEVs and advancing the understanding of their glycosignature.
Collapse
Affiliation(s)
- Niangui Cai
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xiaozhen Zhan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Yan Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Junwei Xue
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Chen Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Yurou Li
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Ye Tian
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
3
|
Pauwels J, Fijałkowska D, Eyckerman S, Gevaert K. Mass spectrometry and the cellular surfaceome. MASS SPECTROMETRY REVIEWS 2022; 41:804-841. [PMID: 33655572 DOI: 10.1002/mas.21690] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The collection of exposed plasma membrane proteins, collectively termed the surfaceome, is involved in multiple vital cellular processes, such as the communication of cells with their surroundings and the regulation of transport across the lipid bilayer. The surfaceome also plays key roles in the immune system by recognizing and presenting antigens, with its possible malfunctioning linked to disease. Surface proteins have long been explored as potential cell markers, disease biomarkers, and therapeutic drug targets. Despite its importance, a detailed study of the surfaceome continues to pose major challenges for mass spectrometry-driven proteomics due to the inherent biophysical characteristics of surface proteins. Their inefficient extraction from hydrophobic membranes to an aqueous medium and their lower abundance compared to intracellular proteins hamper the analysis of surface proteins, which are therefore usually underrepresented in proteomic datasets. To tackle such problems, several innovative analytical methodologies have been developed. This review aims at providing an extensive overview of the different methods for surfaceome analysis, with respective considerations for downstream mass spectrometry-based proteomics.
Collapse
Affiliation(s)
- Jarne Pauwels
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Xie F, Li B, Huang Z, Lin Z, Mai J, Lv S, Yuan Y, Zhang W, Qian F. The Synthesis and Application of 2-Cyano and -Ester Containing Anilines: Selective Copper-Catalyzed Reductive Amination, N-Benzylation, and Cyclization Reactions. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1840-5768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractA convenient and practical pathway to 2-cyano and 2-ester anilines is described via efficient and selective copper(II)-catalyzed reductive amination via hydrosilylation process. Both 2-cyano and 2-ester anilines were successfully synthesized with good functional group tolerance and high selectivity. The application of the 2-cyano and -iodine containing anilines was developed in the synthesis of indoloindole derivatives via CuSO4-catalyzed N-benzylation and cyclization reaction in ‘one pot’. More interestingly, the photophysical property investigations of these 2-cyano and 2-ester containing anilines exhibit excellent fluorescent properties, which have great potential application in the development of interesting near-ultraviolet optical devices in the near future.
Collapse
Affiliation(s)
- Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University
| | - Ziwei Huang
- School of Biotechnology and Health Sciences, Wuyi University
| | - Zirui Lin
- School of Biotechnology and Health Sciences, Wuyi University
| | - Jiexiong Mai
- School of Biotechnology and Health Sciences, Wuyi University
| | - Shaohuan Lv
- School of Biotechnology and Health Sciences, Wuyi University
| | - Youxue Yuan
- Guangdong Wamo New Material Technology Co., Ltd
| | | | - Fan Qian
- Guangdong Wamo New Material Technology Co., Ltd
| |
Collapse
|
5
|
Wang X, Lin Z, Bustin KA, McKnight NR, Parsons WH, Matthews ML. Discovery of Potent and Selective Inhibitors against Protein-Derived Electrophilic Cofactors. J Am Chem Soc 2022; 144:5377-5388. [PMID: 35235319 PMCID: PMC10159212 DOI: 10.1021/jacs.1c12748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrophilic cofactors are widely distributed in nature and play important roles in many physiological and disease processes, yet they have remained blind spots in traditional activity-based protein profiling (ABPP) approaches that target nucleophiles. More recently, reverse-polarity (RP)-ABPP using hydrazine probes identified an electrophilic N-terminal glyoxylyl (Glox) group for the first time in secernin-3 (SCRN3). The biological function(s) of both the protein and Glox as a cofactor has not yet been pharmacologically validated because of the lack of selective inhibitors that could disrupt and therefore identify its activity. Here, we present the first platform for analyzing the reactivity and selectivity of an expanded nucleophilic probe library toward main-chain carbonyl cofactors such as Glox and pyruvoyl (Pyvl) groups. We first applied the library proteome-wide to profile and confirm engagement with various electrophilic protein targets, including secernin-2 (SCRN2), shown here also to possess a Glox group. A broadly reactive indole ethylhydrazine probe was used for a competitive in vitro RP-ABPP assay to screen for selective inhibitors against such cofactors from a set of commercially available nucleophilic fragments. Using Glox-containing SCRN proteins as a case study, naphthyl hydrazine was identified as a potent and selective SCRN3 inhibitor, showing complete inhibition in cell lysates with no significant cross-reactivity detected for other enzymes. Moving forward, this platform provides the fundamental basis for the development of selective Glox inhibitors and represents a starting point to advance small molecules that modulate electrophile-dependent function.
Collapse
Affiliation(s)
- Xie Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zongtao Lin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katelyn A Bustin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nate R McKnight
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - William H Parsons
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Megan L Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Kocsis I, Ding Y, Williams NH, Hunter CA. Transmembrane signal transduction by cofactor transport. Chem Sci 2021; 12:12377-12382. [PMID: 34603667 PMCID: PMC8480319 DOI: 10.1039/d1sc03910e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022] Open
Abstract
Information processing and cell signalling in biological systems relies on passing chemical signals across lipid bilayer membranes, but examples of synthetic systems that can achieve this process are rare. A synthetic transducer has been developed that triggers catalytic hydrolysis of an ester substrate inside lipid vesicles in response to addition of metal ions to the external vesicle solution. The output signal generated in the internal compartment of the vesicles is produced by binding of a metal ion cofactor to a head group on the transducer to form a catalytically competent complex. The mechanism of signal transduction is based on transport of the metal ion cofactor across the bilayer by the transducer, and the system can be reversibly switched between on and off states by adding cadmium(ii) and ethylene diamine tetracarboxylic acid input signals respectively. The transducer is also equipped with a hydrazide moiety, which allows modulation of activity through covalent conjugation with aldehydes. Conjugation with a sugar derivative abolished activity, because the resulting hydrazone is too polar to cross the bilayer, whereas conjugation with a pyridine derivative increased activity. Coupling transport with catalysis provides a straightforward mechanism for generating complex systems using simple components. Synthetic transducers transport externally added metal ion cofactors across the lipid bilayer membrane of vesicles to trigger catalysis of ester hydrolysis in the inner compartment. Signal transduction activity is modulated by hydrazone formation.![]()
Collapse
Affiliation(s)
- Istvan Kocsis
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Yudi Ding
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | | | - Christopher A Hunter
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
7
|
Suazo KF, Park KY, Distefano MD. A Not-So-Ancient Grease History: Click Chemistry and Protein Lipid Modifications. Chem Rev 2021; 121:7178-7248. [PMID: 33821625 PMCID: PMC8820976 DOI: 10.1021/acs.chemrev.0c01108] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein lipid modification involves the attachment of hydrophobic groups to proteins via ester, thioester, amide, or thioether linkages. In this review, the specific click chemical reactions that have been employed to study protein lipid modification and their use for specific labeling applications are first described. This is followed by an introduction to the different types of protein lipid modifications that occur in biology. Next, the roles of click chemistry in elucidating specific biological features including the identification of lipid-modified proteins, studies of their regulation, and their role in diseases are presented. A description of the use of protein-lipid modifying enzymes for specific labeling applications including protein immobilization, fluorescent labeling, nanostructure assembly, and the construction of protein-drug conjugates is presented next. Concluding remarks and future directions are presented in the final section.
Collapse
Affiliation(s)
- Kiall F. Suazo
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Keun-Young Park
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
8
|
Jeong M, Park J, Kwon S. Molecular Switches and Motors Powered by Orthogonal Stimuli. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Myeongsu Jeong
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| | - Jiyoon Park
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| | - Sunbum Kwon
- Department of Chemistry Chung‐Ang University Heukseok‐ro, Dongjak‐gu 06974 Seoul Republic of Korea
| |
Collapse
|
9
|
Alkanawati M, da Costa Marques R, Mailänder V, Landfester K, Thérien-Aubin H. Polysaccharide-Based pH-Responsive Nanocapsules Prepared with Bio-Orthogonal Chemistry and Their Use as Responsive Delivery Systems. Biomacromolecules 2020; 21:2764-2771. [PMID: 32530606 PMCID: PMC7467571 DOI: 10.1021/acs.biomac.0c00492] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Indexed: 12/22/2022]
Abstract
Bio-orthogonal reactions have become an essential tool to prepare biomaterials; for example, in the synthesis of nanocarriers, bio-orthogonal chemistry allows circumventing common obstacles related to the encapsulation of delicate payloads or the occurrence of uncontrolled side reactions, which significantly limit the range of potential payloads to encapsulate. Here, we report a new approach to prepare pH-responsive nanocarriers using dynamic bio-orthogonal chemistry. The reaction between a poly(hydrazide) crosslinker and functionalized polysaccharides was used to form a pH-responsive hydrazone network. The network formation occurred at the interface of aqueous nanodroplets in miniemulsion and led to the production of nanocapsules that were able to encapsulate payloads of different molecular weights. The resulting nanocapsules displayed low cytotoxicity and were able to release the encapsulated payload, in a controlled manner, under mildly acidic conditions.
Collapse
Affiliation(s)
| | - Richard da Costa Marques
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Dermatology, University Medical Center
of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, Mainz 55131, Germany
| | - Volker Mailänder
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Department
of Dermatology, University Medical Center
of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, Mainz 55131, Germany
| | - Katharina Landfester
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | | |
Collapse
|