1
|
Kim SB, Kamiya G, Furuta T, Maki SA. Coelenterazine Analogs for Bioassays and Molecular Imaging. SENSORS (BASEL, SWITZERLAND) 2025; 25:1651. [PMID: 40292719 PMCID: PMC11945097 DOI: 10.3390/s25061651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/30/2025]
Abstract
Coelenterazine (CTZ) is a common substrate of marine luciferases upon emission of bioluminescence (BL) in living organisms. Because CTZ works as a "luminophore" in the process of BL emission, the chemical modification has been centered for improving the optical properties of BL. In this review, we showcase recent advances in CTZ designs with unique functionalities. We first elucidate the light-emitting mechanisms of CTZ, and then focus on how the rational modification of CTZ analogs developed in recent years are connected to the development of unique functionalities even without luciferases, which include color tunability covering the visible region, specificity to various proteins (e.g., luciferase, albumin, and virus protein), and activatability to ions or reactive oxygen species (ROS) and anticancer drugs. This review provides new insights into the broad utilities of CTZ analogs with designed functionalities in bioassays and molecular imaging.
Collapse
Affiliation(s)
- Sung-Bae Kim
- Environmental Management Research Institute (EMRI), National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Genta Kamiya
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu 182-8585, Japan; (G.K.); (S.A.M.)
| | - Tadaomi Furuta
- School of Life Science and Technology, Institute of Science Tokyo, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan;
| | - Shojiro A. Maki
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu 182-8585, Japan; (G.K.); (S.A.M.)
| |
Collapse
|
2
|
De Leo TC, Dos Santos SN, Bernardes ES, Cummings RD, Stowell SR, Dias-Baruffi M. Molecular Imaging for In Vivo Tracking and Detection of Galectin Binding Partners. Methods Mol Biol 2022; 2442:339-352. [PMID: 35320534 DOI: 10.1007/978-1-0716-2055-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Molecular imaging (MI) is a non-invasive growing technology that allows the investigation of cellular and molecular processes in basic and clinical research and medicine. Luminescent proteins and radionuclides can be associated to target molecules providing high-definition and real-time image of whole body in few minutes or hours. Several MI studies have enabled the determination of molecular partners, in vivo tracking, and fate of compounds in different disorders. Considering that galectins are multifaceted proteins with great impact in many biological events, here we describe methods and strategies to generate labeled galectins for in vivo non-invasive imaging studies.
Collapse
Affiliation(s)
- Thais Canassa De Leo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Sofia Nascimento Dos Santos
- Departamento de Radiofarmácia, Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, São Paulo, SP, Brasil
| | - Emerson Soares Bernardes
- Departamento de Radiofarmácia, Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN, São Paulo, SP, Brasil
| | | | - Sean R Stowell
- Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo Dias-Baruffi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil.
| |
Collapse
|
3
|
Moreira Teixeira L, Mezzanotte L. New bioimaging avenues for organs‐on‐chips by integration of bioluminescence. VIEW 2021. [DOI: 10.1002/viw.20200177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Liliana Moreira Teixeira
- Department of Developmental Bioengineering Technical Medical Centre University of Twente Enschede The Netherlands
| | - Laura Mezzanotte
- Department of Radiology and Nuclear Medicine Erasmus Medical Center Rotterdam The Netherlands
- Department of Molecular Genetics Erasmus Medical Center Rotterdam The Netherlands
| |
Collapse
|
4
|
Li J, Wang X, Dong G, Yan C, Cui Y, Zhang Z, Du L, Li M. Novel furimazine derivatives for nanoluciferase bioluminescence with various C-6 and C-8 substituents. Org Biomol Chem 2021; 19:7930-7936. [PMID: 34549229 DOI: 10.1039/d1ob01098k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanoluciferase (NLuc) is the emerging commercially available luciferase considering its small size and superior bioluminescence performance. Nevertheless, this bioluminescence system has some limitations, including narrow emission wavelength and single substrate. Herein, a series of novel furimazine derivatives at the C-6 and C-8 positions of the imidazopyrazinone core have been designed and synthesized for extension of the bioluminescence substrates. It should be noted that two compounds, molecules A2 (2-(furan-2-ylmethyl)-6-(4-(hydroxymethyl)phenyl)-8-(phenylthio)imidazo[1,2-a]pyrazin-3(7H)-one) and A3 (2-(furan-2-ylmethyl)-6-(4-amino-3-fluorophenyl)-8-(phenylthio)imidazo[1,2-a]pyrazin-3(7H)-one), display reasonable bioluminescence properties for in vitro and in vivo biological evaluations. In particular, compound A3 can broaden the application of NLuc bioluminescence techniques, especially for in vivo bioluminescent imaging.
Collapse
Affiliation(s)
- Jie Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Xiaoxu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Chongzheng Yan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Yuanyuan Cui
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Zheng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
5
|
Emerging tools for bioluminescence imaging. Curr Opin Chem Biol 2021; 63:86-94. [PMID: 33770744 DOI: 10.1016/j.cbpa.2021.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/27/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023]
Abstract
Bioluminescence (BL) relies on the enzymatic reaction between luciferase, a substrate conventionally named luciferin, and various cofactors. BL imaging has become a widely used technique to interrogate gene expression and cell fate, both in small and large animal models of research. Recent developments include the generation of improved luciferase-luciferin systems for deeper and more sensitive imaging as well as new caged luciferins to report on enzymatic activity and other intracellular functions. Here, we critically evaluate the emerging tools for BL imaging aiming to provide the reader with an updated compendium of the latest developments (2018-2020) and their notable applications.
Collapse
|
6
|
Abstract
Bioluminescence (BL) is an excellent optical readout platform that has great potential to be utilized in various bioassays and molecular imaging. The advantages of BL-based bioassays include the long dynamic range, minimal background, high signal-to-noise ratios, biocompatibility for use in cell-based assays, no need of external light source for excitation, simplicity in the measurement system, and versatility in the assay design. The recent intensive research in BL has greatly diversified the available luciferase-luciferin systems in the bioassay toolbox. However, the wide variety does not promise their successful utilization in various bioassays as new tools. This is mainly due to complexity and confusion with the diversity, and the unavailability of defined standards. This review is intended to provide an overview of recent basic developments and applications in BL studies, and showcases the bioanalytical utilities. We hope that this review can be used as an instant reference on BL and provides useful guidance for readers in narrowing down their potential options in their own assay designs.
Collapse
Affiliation(s)
- Sung-Bae Kim
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine
| |
Collapse
|