Umaña CA, Henry JL, Saltzman CT, Sackett DL, Jenkins LM, Taylor RE. Linear (-)-Zampanolide: Flexibility in Conformation-Activity Relationships.
ChemMedChem 2023;
18:e202300292. [PMID:
37552215 PMCID:
PMC10615712 DOI:
10.1002/cmdc.202300292]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Through an understanding of the conformational preferences of the polyketide natural product (-)-zampanolide, and the structural motifs that control these preferences, we developed a linear zampanolide analogue that exhibits potent cytotoxicity against cancer cell lines. This discovery provides a set of three structural handles for further structure-activity relationship (SAR) studies of this potent microtubule-stabilizing agent. Moreover, it provides additional evidence of the complex relationship between ligand preorganization, conformational flexibility, and biological potency. In contrast to medicinal chemistry dogma, these results demonstrate that increased overall conformational flexibility is not necessarily detrimental to protein binding affinity and biological activity.
Collapse