1
|
Wang A, Yue K, Zhong W, Zhang G, Wang L, Wang H, Zhang H, Zhang X. Ligand-receptor interaction in the specific targeting of biomimetic peptide nanoparticles to lysophosphatidylcholine. Int J Biol Macromol 2023; 227:193-202. [PMID: 36549027 DOI: 10.1016/j.ijbiomac.2022.12.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
As nanotechnology is applied clinical medicine, nanoparticle-based therapy is emerging as a novel approach for the treatment of atherosclerosis. Ligand-receptor interaction affects the effectiveness of nanoparticle targeting therapy. In this study, the biomimetic peptide (BP-KFFVLK-WYKDGD) ligand specifically targeting the lysophosphatidylcholine (LPC) receptor in atherosclerotic plaques was constructed. The corresponding ligand-receptor interaction under different pH values was investigated by molecular dynamics simulation and experimental measurements. Results show that the interaction force between the peptide and LPC is greater than that of the peptide and human umbilical vein endothelial cell, clearly demonstrating the specific targeting of the peptide ligand to the LPC receptor. The ligand-receptor binding of peptide and LPC dominantly depends on Coulomb and van der Waals interactions. The YKDG amino acids of the peptide are the main fragment that binds to LPC. Compared with neutral environment at pH 7.4, the interaction forces between the peptide and oxidized low-density lipoprotein (oxLDL) decreased by 18.22 % and 45.87 % under acidic environments at pH 6.5 and 5.5, respectively, because of the change in oxLDL secondary structure and the release of LPC from oxLDL. Nevertheless, the peptide still has a strong binding capacity with oxLDL for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Anqi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China.
| | - Weishen Zhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China
| | - Lei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hua Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province 528399, China
| |
Collapse
|
2
|
Self-assembly and disassembly mechanisms of biomimetic peptides: Molecular dynamics simulation and experimental measurement. Int J Biol Macromol 2022; 209:785-793. [PMID: 35429517 DOI: 10.1016/j.ijbiomac.2022.04.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/13/2022] [Accepted: 04/09/2022] [Indexed: 01/22/2023]
Abstract
Drug-loaded pH-responsive nanoparticles are potential drug carriers in nanotherapeutics delivery because they can remain stable in normal tissues but can disassemble and release drug molecules in tumors. In this study, the mechanisms of self-assembly and disassembly were investigated by analyzing the characteristics of three kinds of biomimetic peptides with different components and sequences. The structural parameters and energy changes during self-assembly and disassembly were calculated by molecular dynamics simulation. Transmission electron microscopy, Fourier transform infrared spectroscopy, and atomic force microscopy were used to observe morphological changes and measure the strength of hydrophobic and hydrophilic interactions between peptides. Results show that the hydrophobic and hydrophilic interactions play crucial roles in the self-assembly and disassembly processes of peptides. The structure of the peptide clusters after self-assembly became tighter as the difference between hydrophobic and hydrophilic interactions increased, whereas a decrease in this difference led to the increased disassembly of the peptides. In general, polyethylene glycol chain modification was necessary in disassembly, and peptides with straight structures had stronger disassembly ability than that with branched structures with the same components. The morphology of peptide clusters can be controlled under different pH values by changing the composition and structure of the peptides for enhanced drug retention and sustained release.
Collapse
|
3
|
Zullo V, Iuliano A, Pescitelli G, Zinna F. Tunable Excimer Circularly Polarized Luminescence in Isohexide Derivatives from Renewable Resources. Chemistry 2022; 28:e202104226. [PMID: 34982485 PMCID: PMC9303411 DOI: 10.1002/chem.202104226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/30/2022]
Abstract
Organic compounds showing circularly polarized luminescence (CPL) are at the forefront of novel applications and technologies. Here we show the synthesis and chiroptical properties of pyrene and perylene derivatives of inexpensive chiral scaffolds: isomannide and isosorbide. Low‐intensity ECD spectra were obtained, suggesting the absence of chromophore interaction in the ground state, except in the case of isomannide bis‐perylenecarboxylate, whose ECD spectrum showed a positive exciton couplet. All isomannide derivatives, with the only exception of the one containing a pyrenecarboxylate and a perylenecarboxylate, exhibited excimer CPL spectra, whereas isosorbide derivatives did not show any CPL. Isomannide derivatives bearing two pyrenecarboxylate or two pyrenylacetate groups showed positive CPL emission with dissymmetry factors up to 10−2, which depends on the conformational freedom of the appended units. The CPL sign, Stokes shift and order of magnitude of dissymmetry factor were reproduced by excited‐state calculations on a representative compound. Interestingly, the mixed derivative containing pyrenic units with different spacing from the isomannide scaffold showed an oppositely signed excimer band with respect to the homo‐substituted derivatives.
Collapse
Affiliation(s)
- Valerio Zullo
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | - Anna Iuliano
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| |
Collapse
|
4
|
Takaishi K, Murakami S, Iwachido K, Ema T. Chiral exciplex dyes showing circularly polarized luminescence: extension of the excimer chirality rule. Chem Sci 2021; 12:14570-14576. [PMID: 34881009 PMCID: PMC8580037 DOI: 10.1039/d1sc04403f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022] Open
Abstract
A series of axially chiral binaphthyls and quaternaphthyls possessing two kinds of aromatic fluorophores, such as pyrenyl, perylenyl, and 4-(dimethylamino)phenyl groups, arranged alternately were synthesized by a divergent method. In the excited state, the fluorophores selectively formed a unidirectionally twisted exciplex (excited heterodimer) by a cumulative steric effect and exhibited circularly polarized luminescence (CPL). They are the first examples of a monomolecular exciplex CPL dye. This versatile method for producing exciplex CPL dyes also improved fluorescence intensity, and the CPL properties were not very sensitive to the solvent or to the temperature owing to the conformationally rigid exciplex. This systematic study allowed us to confirm that the excimer chirality rule can be applied to the exciplex dyes: left- and right-handed exciplexes with a twist angle of less than 90° exhibit (-)- and (+)-CPL, respectively.
Collapse
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| | - Sho Murakami
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| | - Kazuhiro Iwachido
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University Tsushima Okayama 700-8530 Japan
| |
Collapse
|
5
|
Bai X, Jiang Y, Zhao G, Jiang J, Yuan C, Liu M. Inversing supramolecular chirality and boosting circularly polarized luminescence of pyrene moieties via a gel matrix. SOFT MATTER 2021; 17:4328-4334. [PMID: 33908598 DOI: 10.1039/d1sm00262g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alkyl-substituted l/d-glutamide derivatives (L/D-SG) were designed as gelators to fabricate host gel matrices. Pyrene-appended l/d-glutamide derivatives (Py-LG/Py-DG) were employed as guest luminophores to investigate chiral packing and emission behavior in gel matrices. It was found that Py-LG and Py-DG are prone to form P- and M-chirally packed assemblies in DMSO gels, respectively. However, the chiral packing was inversed, and CPL was boosted after Py-LG/Py-DG was embedded in the L/D-SG gel matrix. M-chiral packing together with left-handed excimer emission ((-)-CPL) was observed in the Py-LG immobilized L-SG gel matrix, while P-chiral packing together with right-handed excimer emission ((+)-CPL) was found in the Py-DG immobilized L-SG gel matrix. It is more interesting to find that the molecular chirality of the matrix gelator did not affect the supramolecular chirality of pyrene assemblies. Either l or a d-matrix gelator can inverse the supramolecular chirality of the pure gel, but did not follow the chirality of the matrix. It was found that the gel matrix converts intralayer pyrene-pyrene (Py-Py) packing in the pure pyrene gel to interlayer Py-Py packing, thus giving an opposite chirality. The study not only deepened our understanding of the supramolecular chirality transfer but also unveiled the effects of an inert gel matrix in regulating the chiroptical properties.
Collapse
Affiliation(s)
- Xue Bai
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China. and Key laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Yuqian Jiang
- Key laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Guangjiu Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China.
| | - Jian Jiang
- Key laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Chenhuan Yuan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 ZhongGuanCun BeiYiJie, 100190, Beijing, P. R. China
| | - Minghua Liu
- Key laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
6
|
Mizuno H, Kitamatsu M, Imai Y, Fukuhara G. Smart Fluorescence Materials that Are Controllable by Hydrostatic Pressure: Peptide−Pyrene Conjugates. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hiroaki Mizuno
- Department of ChemistryTokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Mizuki Kitamatsu
- Department of Applied ChemistryFaculty of Science and EngineeringKindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Yoshitane Imai
- Department of Applied ChemistryFaculty of Science and EngineeringKindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Gaku Fukuhara
- Department of ChemistryTokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
7
|
Fan H, Jiang H, Zhu X, Guo Z, Zhang L, Liu M. Switchable circularly polarized luminescence from a photoacid co-assembled organic nanotube. NANOSCALE 2019; 11:10504-10510. [PMID: 31115419 DOI: 10.1039/c9nr01959f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Materials with circularly polarized luminescence (CPL) are currently attracting great interest in view of their potential applications. Here, we reported self-assembled organic nanotubes with switchable CPL performance. A photoacid, 8-hydroxy-1,3,6-pyrenetrisulfonate (HPTS), was co-assembled with an amino-terminated dialkyl glutamide (LG or DG) in mixed solvents of DMF and water. The complex of LG (DG)/HPTS self-assembled into nanotube structures in the tested range of mixed solvents and showed CPL emission. Different mixing ratios of DMF to water in the solvent triggered CPL switching between different wavelengths. It was revealed that the switching of CPL resulted from the different emissions of the protonated (ROH) and deprotonated (RO-) forms of HPTS, which could be regulated by the solvent polarity. Interestingly, the addition of an acid or base could also switch the fluorescence of LG (DG)/HPTS co-assemblies and the corresponding CPL, leading to an acidity-regulated CPL switch. Thus, through a simple co-assembly strategy, switchable CPL was realized in the self-assembled organic nanotubes via both solvent polarity and acidity.
Collapse
Affiliation(s)
- Huahua Fan
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
| | | | | | | | | | | |
Collapse
|
8
|
Takaishi K, Iwachido K, Takehana R, Uchiyama M, Ema T. Evolving Fluorophores into Circularly Polarized Luminophores with a Chiral Naphthalene Tetramer: Proposal of Excimer Chirality Rule for Circularly Polarized Luminescence. J Am Chem Soc 2019; 141:6185-6190. [DOI: 10.1021/jacs.9b02582] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kazuto Takaishi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
- Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazuhiro Iwachido
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Ryosuke Takehana
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| | - Masanobu Uchiyama
- Cluster for Pioneering Research (CPR), Advanced Elements Chemistry Laboratory, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda 386-8567, Japan
| | - Tadashi Ema
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan
| |
Collapse
|