1
|
Roy VJ, Dagar N, Choudhury S, Raha Roy S. Unified Approach to Diverse Heterocyclic Synthesis: Organo-Photocatalyzed Carboacylation of Alkenes and Alkynes from Feedstock Aldehydes and Alcohols. J Org Chem 2023; 88:15374-15388. [PMID: 37871233 DOI: 10.1021/acs.joc.3c01884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
We report an organo-photocatalyzed carboacylation reaction that offers a springboard to create chemical complexity in a diversity-driven approach. The modular one-pot method uses feedstock aldehydes and alcohols as acyl surrogates and commercially available Eosin Y as the photoredox catalyst, making it simple and affordable to introduce structural diversity. Several biologically relevant skeletons have been easily synthesized under mild conditions in the presence of visible light irradiation by fostering a radical acylation/cyclization cascade. The proposed reaction mechanism was further illuminated by a number of spectroscopic studies. Furthermore, we applied this protocol for the late-stage functionalization of pharmaceuticals and blockbuster drugs.
Collapse
Affiliation(s)
- Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Swagata Choudhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
2
|
Murugesan V, Muralidharan A, Anantharaj GV, Chinnusamy T, Rasappan R. Photoredox–Ni Dual Catalysis: Chelation-Free Hydroacylation of Terminal Alkynes. Org Lett 2022; 24:8435-8440. [DOI: 10.1021/acs.orglett.2c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vetrivelan Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Anjana Muralidharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Guru Vigknesh Anantharaj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Tamilselvi Chinnusamy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
3
|
Moghadam Farid S, Seifinoferest B, Gholamhosseyni M, Larijani B, Mahdavi M. Modern metal-catalyzed and organocatalytic methods for synthesis of coumarin derivatives: a review. Org Biomol Chem 2022; 20:4846-4883. [PMID: 35642609 DOI: 10.1039/d2ob00491g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coumarin is an important pharmaceutical structural motif, abundantly found in numerous commonly used drugs. Compounds containing this core show a broad spectrum of medicinal properties and biological activities. The increasing importance and wide usages of coumarin derivatives have drawn attention to its synthetic methods, among which metal-catalyzed and organocatalytic methods have proved the most effective. Several metal-catalyzed and/or organocatalytic synthetic strategies for coumarin have been investigated and reported in recent decades. This review focuses on more recent reports on catalysis methods for synthesizing coumarin and coumarin-like structures (including light-mediated methods and nano-catalysts), exploring the mechanistic aspects, simplicity, efficiency, repeatability, and other advantages and disadvantages of these methods.
Collapse
Affiliation(s)
- Sara Moghadam Farid
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Behnoush Seifinoferest
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maral Gholamhosseyni
- Department of Chemistry, College of Chemistry, University of Tehran, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Wang B, Zhong X, Yao H, Deng R, Yan Z, Gao M, Sen L. Direct alkylation and acylation of 2H‐indazoles using aldehydes under metal‐free conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bingqing Wang
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Xiaoyang Zhong
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Hua Yao
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Ruihong Deng
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Zhaohua Yan
- Nanchang University - Qianhu Campus: Nanchang University department of chemistry CHINA
| | - Mengjiao Gao
- Nanchang University Medical College: Medical College of Nanchang University department of medical CHINA
| | - Lin Sen
- Nanchang University Department of Chemistry Nangchang University 330000 Nangchang CHINA
| |
Collapse
|
5
|
Sharma D, Dhayalan V, Chatterjee R, Khatravath M, Dandela R. Recent Advances in the Synthesis of Coumarin and Its Derivatives by Using Aryl Propiolates. ChemistrySelect 2022. [DOI: 10.1002/slct.202104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Deepika Sharma
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology, Indian oil Odisha Campus,Kharagpur extension Centre Mouza, Samantpuri Bhubaneswar 751013, Odisha India
| | - Vasudevan Dhayalan
- Department of Chemistry National Institute of Technology Puducherry Karaikal 609609, Union Territory Puducherry India
| | - Rana Chatterjee
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology, Indian oil Odisha Campus,Kharagpur extension Centre Mouza, Samantpuri Bhubaneswar 751013, Odisha India
| | - Mahender Khatravath
- Department of Chemistry Central University of South Bihar Gaya, SH-7 Panchanpur Road Karhara, Post Fatehpur Gaya Bihar 824236 India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry Institute of Chemical Technology, Indian oil Odisha Campus,Kharagpur extension Centre Mouza, Samantpuri Bhubaneswar 751013, Odisha India
| |
Collapse
|
6
|
Zeng P, Huang X, Tang W, Chen Z. Copper-catalyzed cascade radical cyclization of alkynoates: construction of aryldifluoromethylated coumarins. Org Biomol Chem 2021; 19:10223-10227. [PMID: 34806739 DOI: 10.1039/d1ob01754c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A mild and simple method is reported for the construction of 3-difluoroarylmethylated coumarins using α,α-difluoroarylacetic acids as an easily handled difluoromethyl source in reaction with ester 3-arylpropiolates under the promotion of copper. The reaction involves a proposed radical-triggered domino decarboxylative aryldifluoromethylation/5-exo cyclization/ester migration process that directly forms Csp2-CF2Ar and C-C bonds with good functional group tolerance.
Collapse
Affiliation(s)
- Piaopiao Zeng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| | - Xiaoxiao Huang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| | - Wei Tang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| | - Zhiwei Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology; College of Pharmaceutical Sciences, Zhejiang University of Technology, Chao Wang Road 18th, 310014 Hangzhou, China.
| |
Collapse
|
7
|
Zhou Q, Xiong FT, Chen P, Xiong BQ, Tang KW, Liu Y. The visible-light-induced acylation/cyclization of alkynoates with acyl oximes for the construction of 3-acylcoumarins. Org Biomol Chem 2021; 19:9012-9020. [PMID: 34610069 DOI: 10.1039/d1ob01568k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A nitrogen-centered radical-mediated carbon-carbon bond cleavage strategy is described to synthesize functionalized 3-acylcoumarins. The strategy is enabled by the visible-light-induced acylation/cyclization of alkynoates with various acyl oxime compounds in acetonitrile. The difunctionalization of carbon-carbon triple bonds precedes the generation of iminyl radicals, which is followed by the formation of acyl radicals. The acyl radicals then attack the carbon-carbon triple bonds, followed by 5-exo-trig cyclization and 1,2-ester migration. This strategy has wide substrate adaptability and good substituent tolerance.
Collapse
Affiliation(s)
- Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Fang-Ting Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
8
|
Sau S, Mal P. 3-Nitro-coumarin synthesis via nitrative cyclization of aryl alkynoates using tert-butyl nitrite. Chem Commun (Camb) 2021; 57:9228-9231. [PMID: 34519303 DOI: 10.1039/d1cc03415d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a one-pot metal-free synthesis of 3-nitro-coumarins from aryl alkynoates using TBN (tert-butyl nitrite) as the sole reagent. The radical triggered cyclization and nitration of the aryl alkynoates proceeded in a cascaded manner via nitro radical addition to alkynoates, then 5-exo-trig spirocyclization and ester migration.
Collapse
Affiliation(s)
- Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| |
Collapse
|
9
|
Zhao H, Ni N, Li X, Cheng D, Xu X. The decarboxylation coupling reaction of α-keto acid with Baylis-Hillman carbonates by visible light photoredox catalysis. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Xi J, Wu X, Huang M, Kim JK, Zhang J, Li Y, Wu Y. A visible-light-induced photocatalyst-free approach for C-3 dicarbonyl coumarin production. Chem Commun (Camb) 2021; 57:7308-7311. [PMID: 34223574 DOI: 10.1039/d1cc02399c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A mild and efficient visible-light-induced synthesis of C-3 dicarbonyl coumarins from 3-arylacetylene coumarins without a photocatalyst was reported. This iodide-mediated method exhibited broad substrate scope and good functional group tolerance, and a series of C-3 dicarbonyl coumarins were obtained in moderate to excellent yields. Based on the control experimental results, it was found that the visible-light-induced oxidation might be via both radical and ionic processes. Moreover, some synthesized compounds displayed high sensitivity to hydrogen peroxide (H2O2) with a low detection limit (DL, down to 0.149 μM).
Collapse
Affiliation(s)
- Jinhu Xi
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
12
|
Cai H, Khanal HD, Lee YR. Base‐Promoted Direct Cascade Transformation of Chromones to Coumarins via Benzannulation and Transesterification. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hongyun Cai
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 (Republic of Korea
| | - Hari Datta Khanal
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 (Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 (Republic of Korea
| |
Collapse
|
13
|
Khan I, Ibrar A, Zaib S. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Top Curr Chem (Cham) 2021; 379:3. [PMID: 33398642 DOI: 10.1007/s41061-020-00316-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Heterocycles, heteroaromatics and spirocyclic entities are ubiquitous components of a wide plethora of synthetic drugs, biologically active natural products, marketed pharmaceuticals and agrochemical targets. Recognizing their high proportion in drugs and rich pharmacological potential, these invaluable structural motifs have garnered significant interest, thus enabling the development of efficient catalytic methodologies providing access to architecturally complex and diverse molecules with high atom-economy and low cost. These chemical processes not only allow the formation of diverse heterocycles but also utilize a range of flexible and easily accessible building units in a single operation to discover diversity-oriented synthetic approaches. Alkynoates are significantly important, diverse and powerful building blocks in organic chemistry due to their unique and inherent properties such as the electronic bias on carbon-carbon triple bonds posed by electron-withdrawing groups or the metallic coordination site provided by carbonyl groups. The present review highlights the comprehensive picture of the utility of alkynoates (2007-2019) for the synthesis of various heterocycles (> 50 types) using transition-metal catalysts (Ru, Rh, Pd, Ir, Ag, Au, Pt, Cu, Mn, Fe) in various forms. The valuable function of versatile alkynoates (bearing multifunctional groups) as simple and useful starting materials is explored, thus cyclizing with an array of coupling partners to deliver a broad range of oxygen-, nitrogen-, sulfur-containing heterocycles alongside fused-, and spiro-heterocyclic compounds. In addition, these examples will also focus the scope and reaction limitations, as well as mechanistic investigations into the synthesis of these heterocycles. The biological significance will also be discussed, citing relevant examples of drug molecules highlighting each class of heterocycles. This review summarizes the recent developments in the synthetic methods for the synthesis of various heterocycles using alkynoates as readily available starting materials under transition-metal catalysis.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
14
|
Chen P, Chen Z, Xiong BQ, Liang Y, Tang KW, Xie J, Liu Y. Visible-light-mediated cascade cyanoalkylsulfonylation/cyclization of alkynoates leading to coumarins via SO2 insertion. Org Biomol Chem 2021; 19:3181-3190. [DOI: 10.1039/d1ob00142f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A visible-light-mediated cascade cyanoalkylsulfonylation/cyclization of alkynoates with cycloketone oxime compounds for the preparation of 3-cyanoalkylsulfonylcoumarins via SO2 insertion is reported.
Collapse
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
- Hunan Normal University
- Changsha
- China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province
| |
Collapse
|
15
|
Eşsiz S. A computational study for the reaction mechanism of metal-free cyanomethylation of aryl alkynoates with acetonitrile. RSC Adv 2021; 11:18246-18251. [PMID: 35480900 PMCID: PMC9033414 DOI: 10.1039/d1ra01649k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 12/04/2022] Open
Abstract
A computational study of metal-free cyanomethylation and cyclization of aryl alkynoates with acetonitrile is carried out employing density functional theory and high-level coupled-cluster methods, such as coupled-cluster singles and doubles with perturbative triples [CCSD(T)]. Our results indicate that the reaction of aryl alkynoates with acetonitrile in the presence of tert-butyl peroxybenzoate (TBPB) under metal-free conditions tends to proceed through cyanomethylation, spirocyclization and ester migration of the kinetically favoured coumarin derivatives. 1,2-Ester migration in the spiro-radical intermediate 10 does not proceed via the formation of the carboxyl radical 11 suggested by Sun and co-workers. Our results also demonstrate that the t-butoxy radical is substantially responsible the formation of the cyanomethyl radical by the abstraction of a hydrogen atom from acetonitrile. A computational study of metal-free cyanomethylation and cyclization of aryl alkynoates with acetonitrile is carried out employing density functional theory and high-level coupled-cluster methods, such as [CCSD(T)].![]()
Collapse
Affiliation(s)
- Selçuk Eşsiz
- Department of Chemistry
- Faculty of Science
- Atatürk University
- Erzurum 25240
- Turkey
| |
Collapse
|
16
|
Petzold D, Giedyk M, Chatterjee A, König B. A Retrosynthetic Approach for Photocatalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901421] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Petzold
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Maciej Giedyk
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01‐224 Warsaw Poland
| | - Anamitra Chatterjee
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| | - Burkhard König
- Department of Organic Chemistry University of Regensburg Universitätsstraße 31 93053 Regensburg Germany
| |
Collapse
|
17
|
|
18
|
|