1
|
Sportelli G, Grando G, Bevilacqua M, Filippini G, Melchionna M, Fornasiero P. Graphitic Carbon Nitride as Photocatalyst for the Direct Formylation of Anilines. Chemistry 2023; 29:e202301718. [PMID: 37439718 DOI: 10.1002/chem.202301718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
The use of graphitic carbon nitride (g-CN) for the photocatalytic radical formylation of anilines, which represents a more sustainable and attractive alternative to the currently used approaches, is reported herein. Our operationally simple method occurs under mild conditions, employing air as an oxidant. In particular, the chemistry is driven by the ability of g-CN to reach an electronically excited state upon visible-light absorption, which has a suitable potential energy to trigger the formation of reactive α-amino radical species from anilines. Mechanistic investigations also proved the key role of the g-CN to form reactive superoxide radicals from O2 via single electron transfer. Importantly, this photocatalytic transformation provides a variety of functionalized formamides (15 examples, up to 89 % yield).
Collapse
Affiliation(s)
- Giuseppe Sportelli
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Piazza della Vittoria 15, 27100, Pavia, Italy
| | - Gaia Grando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Manuela Bevilacqua
- Institute of Chemistry of Organometallic Compounds (ICCOM-CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
- Center for Energy, Environment and, Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Center for Energy, Environment and, Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
- Center for Energy, Environment and, Transport Giacomo Ciamician and ICCOM-CNR Trieste Research Unit, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
2
|
Gundamalla R, Bantu R, Sridhar B, Jithender Reddy G, Subba Reddy BV. Mannich-type addition of cyclic 1,3-diketones to N-acyliminium ions: Access to aza-sugars. Carbohydr Res 2023; 528:108811. [PMID: 37094532 DOI: 10.1016/j.carres.2023.108811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/25/2023] [Accepted: 04/11/2023] [Indexed: 04/26/2023]
Abstract
A novel three-component strategy has been developed for the synthesis of iminosugars in good to excellent yields. This is the first report on the Mannich type addition of cyclic 1,3-diketones to aza-acetal derived from hydroxy-γ-lactone and arylamine to produce a novel series of aza-sugars with high selectivity.
Collapse
Affiliation(s)
- Rachel Gundamalla
- Fluoro & Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Rajashaker Bantu
- Fluoro & Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - B Sridhar
- Laboratory of X-ray Crystallography, India
| | - G Jithender Reddy
- Centre for NMR and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, India
| | - B V Subba Reddy
- Fluoro & Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
| |
Collapse
|
3
|
Györke G, Dancsó A, Volk B, Bezúr L, Hunyadi D, Szalóki I, Milen M. Direct Use of Copper-Containing Minerals in Goldberg Arylation of Amides. Catal Letters 2022. [DOI: 10.1007/s10562-022-03989-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Wang F, Zhou Q, Zhang X, Fan X. Direct α-Alkenylation of Cyclic Amines with Maleimides through Fe(III)-Catalyzed C(sp 3)-H/C(sp 2)-H Cross Dehydrogenative Coupling. J Org Chem 2021; 86:11708-11722. [PMID: 34355565 DOI: 10.1021/acs.joc.1c01198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Presented herein is a novel and efficient α-C(sp3)-H alkenylation of cyclic amines with maleimides. Mechanistically, this C(sp3)-H/C(sp2)-H cross dehydrogenative coupling (CDC) reaction involves a cascade procedure including oxidative α-amino radical formation from the cyclic amine substrate and nucleophilic addition of the in situ formed α-amino radical onto the electron-deficient carbon-carbon double bond of maleimide followed by oxidation and β-elimination. Notably, this direct α-functionalization provides an effective alternative to the conventional ionic reaction mode, in which an imine or iminium intermediate is formed to react with electron-rich coupling partners other than electron-deficient ones. In general, this method features readily available and structurally diverse substrates, a green and economical catalyst, a unique reaction pathway, mild reaction conditions, high efficiency, and excellent atom economy. This new reaction enriches the application of Fe(III)-catalyzed C(sp3)-H activation and functionalization.
Collapse
Affiliation(s)
- Fang Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Qianting Zhou
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Wang F, Liu X, Wang L. Visible-light-induced C(sp 3)-H functionalizations of piperidines to 3,3-dichloro-2-hydroxy-piperidines with N-chlorosuccinimide. Org Biomol Chem 2021; 19:6141-6146. [PMID: 34180488 DOI: 10.1039/d1ob00868d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-induced synthesis of 3,3-dichloro-2-hydroxy-piperidines via site-selective functionalizations of C(sp3)-H in N-substituted piperidines using easily available N-chlorosuccinimide as chlorine source was developed. Mechanistic investigations suggest that chlorine radical is involved in this transformation.
Collapse
Affiliation(s)
- Fang Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, China.
| | - Xiaoli Liu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, China.
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, China.
| |
Collapse
|
6
|
Characterising Supramolecular Architectures in Crystals Featuring I⋯Br Halogen Bonding: Persistence of X⋯X’ Secondary-Bonding in Their Congeners. CRYSTALS 2021. [DOI: 10.3390/cryst11040433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Cambridge Structural Database was surveyed for crystals featuring I⋯Br secondary-bonding in their supramolecular assemblies occurring independently of other obvious supramolecular synthons and devoid of other halogen bonding interactions. In all, 41 crystals satisfied these criteria, with nine examples of zero-dimensional aggregation (uniformly two-molecule aggregates) and 30 one-dimensional chains of varying topology (linear, zigzag and helical). There is one example each of two- and three-dimensional patterns. Type-I, type-II and intermediate bonding situations are apparent; for type-II bonding, the ratio of iodide:bromide functioning as the electrophile is 2:1. Most molecules participated, on average, in one I⋯Br contact, although smaller numbers of half (zero-dimensional) or two contacts (two- and three-dimensional) were observed. The propensity of the formation of related halogen bonding interactions in congeners of the 41 investigated crystals was also studied. Congeners were apparent for 11 crystals, with seven of these exhibiting isostructural relationships, in terms of space-group symmetry and unit-cell parameters. Isostructural relationships do not ensure the formation of analogous aggregation patterns, particularly and in accord with expectation, for the lighter halides. When formed, often distinct aggregation patterns are observed despite the isostructural relationships. Hetero-atomic halogen bonding offers surprises and opportunities in crystal engineering endeavours.
Collapse
|
7
|
Kondoh A, Terada M. Brønsted Base-Catalyzed Formal Reductive [3+2] Annulation of 4,4,4-Trifluorocrotonate and α-Iminoketones. Chemistry 2021; 27:585-588. [PMID: 32869872 DOI: 10.1002/chem.202002943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/27/2020] [Indexed: 02/01/2023]
Abstract
A formal reductive [3+2] annulation of 4,4,4-trifluorocrotonate and α-iminoketones was developed under Brønsted base catalysis. A single phosphazene base efficiently catalyzes the one-pot tandem reaction involving two mechanistically different elementary processes, namely the chemoselective reduction of an imine moiety of α-iminoketones with thiols as the reductant and the subsequent intermolecular Michael addition of an enolate of α-aminoketones concomitant with lactam formation. This operationally simple method provides β-trifluoromethyl-substituted γ-lactams with a tetrasubstituted carbon as a single diastereomer.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
8
|
He Y, Yang J, Zhang X, Fan X. Selective cleavage and reconstruction of C–N/C–C bonds in saturated cyclic amines: tunable synthesis of lactams and functionalized acyclic amines. Org Chem Front 2021. [DOI: 10.1039/d1qo00689d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective cleavage of C–N/C–C bonds in saturated cyclic amines for the tunable synthesis of lactams and functionalized acyclic amines under the promotion of oxoammonium salt and TBHP in the presence of different additives have been developed.
Collapse
Affiliation(s)
- Yan He
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jintao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
He Y, Zheng Z, Yang J, Zhang X, Fan X. Recent advances in the functionalization of saturated cyclic amines. Org Chem Front 2021. [DOI: 10.1039/d1qo00171j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functionalized cyclic amines are the essential structural moieties of numerous biologically active compounds. This review summarized the most recent advances in the C–H, C–N and C–C bond functionalization of saturated cyclic amines.
Collapse
Affiliation(s)
- Yan He
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Zhi Zheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Jintao Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| |
Collapse
|
10
|
He Y, Zheng Z, Liu Q, Zhang X, Fan X. Solvent-Regulated Coupling of 2-Alkynylbenzaldehydes with Cyclic Amines: Selective Synthesis of Fused N-Heterocycles and Functionalized Naphthalene Derivatives. Org Lett 2020; 22:9053-9058. [DOI: 10.1021/acs.orglett.0c03442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan He
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhi Zheng
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qimeng Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
11
|
An XD, Yang S, Qiu B, Yang TT, Li XJ, Xiao J. Photoredox-Enabled Synthesis of β-Substituted Pyrroles from Pyrrolidines. J Org Chem 2020; 85:9558-9565. [PMID: 32567860 DOI: 10.1021/acs.joc.0c00459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The merger of photoredox-initiated enamine-imine tautomerization and nucleophilic addition processes to access β-substituted pyrroles from pyrrolidines has been achieved. The significant advantage of this method is suppressing the Friedel-Crafts reaction, which usually occurs between N-aryl pyrrolidines and the highly electrophilic ketoesters. The good functional group tolerance, high atom economy, and high regioselectivity as well as easy handling conditions make it an appealing alternative to synthesize β-substituted pyrroles.
Collapse
Affiliation(s)
- Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuo Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bin Qiu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ting-Ting Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xian-Jiang Li
- Shandong Kangqiao Biotechnology Co. Ltd., Binzhou 256500, China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
12
|
Choudhary S, Yadav J, Mamta, Pawar AP, Vanaparthi S, Mir NA, Iype E, Sharma R, Kant R, Kumar I. Sequential multicomponent site-selective synthesis of 4-iodo and 5-iodopyrrole-3-carboxaldehydes from a common set of starting materials by tuning the conditions. Org Biomol Chem 2020; 18:1155-1164. [PMID: 31976504 DOI: 10.1039/c9ob02501d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and straightforward method for the synthesis of 4-iodo and 5-iodopyrrole-3-carboxaldehydes is developed from a common set of starting materials by tuning the reaction conditions. This sequential multicomponent protocol involves I2-mediated regioselective C4-iodination and aromatization of intermediate dihydropyrrole, generated through proline-catalyzed direct Mannich reaction-cyclization sequence between succinaldehyde and imines, to access 4-iodopyrroles. While aerobic oxidative aromatization of dihydropyrrole to pyrrole followed by NIS-mediated regioselective iodination furnished 5-iodopyrroles in a two-pot fashion. A series of site-selective C4/C5-iodopyrroles have been synthesized in good to high yields (up to 78%) and DFT calculations of these compounds were also performed.
Collapse
Affiliation(s)
- Sachin Choudhary
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Jyothi Yadav
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Mamta
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Amol Prakash Pawar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Satheeshvarma Vanaparthi
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Nisar A Mir
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| | - Eldhose Iype
- Department of Chemical Engineering, BITS Pilani, Dubai Campus, Dubai, United Arab Emirates
| | - Ratika Sharma
- X-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu 180 006, India
| | - Rajni Kant
- X-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu 180 006, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333 031, Rajasthan, India.
| |
Collapse
|
13
|
Ten years of progress in the synthesis of six-membered N-heterocycles from alkynes and nitrogen sources. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130876] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Wang F, Zhang X, He Y, Fan X. Synthesis of β-Dicarbonylated Tetrahydropiperidines via Direct Oxidative Cross-Coupling between Different C(sp3)–H Bonds. J Org Chem 2019; 85:2220-2230. [DOI: 10.1021/acs.joc.9b02924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Fang Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan He
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
15
|
Wang F, Zhang X, He Y, Fan X. A novel synthesis of 3-hydroxypiperidin-2-ones via site-selective difunctionalization of piperidine derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Gao Q, Han X, Tong P, Zhang Z, Shen H, Guo Y, Bai S. Aerobic α,β-C(sp3)–H Bond Difunctionalization and C–N Bond Cleavage of Triethylamine: Difunctional Ammonium Iodide Enabling the Regioselective Synthesis of 4-Arylpyrimido[1,2-b]indazoles. Org Lett 2019; 21:6074-6078. [DOI: 10.1021/acs.orglett.9b02218] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| | - Peiyuan Tong
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Zhiang Zhang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Haotian Shen
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| | - Yanrong Guo
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
17
|
He Y, Zheng Z, Liu Y, Qiao J, Zhang X, Fan X. Selective Cleavage and Tunable Functionalization of the C–C/C–N Bonds of N-Arylpiperidines Promoted by tBuONO. Org Lett 2019; 21:1676-1680. [DOI: 10.1021/acs.orglett.9b00226] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yan He
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhi Zheng
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yajie Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiajie Qiao
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
18
|
Borja-Miranda A, Sánchez-Chávez AC, Polindara-García LA. Ammonium Persulfate Promotes Radical Cyclization of 1,3-Dicarbonyl-Ugi 4-CR Adducts: Synthesis of Polysubstituted γ-Lactams in Aqueous Media. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Andrés Borja-Miranda
- Instituto de Química; Universidad Nacional Autónoma de México; Ciudad Universitaria 04510 Ciudad de México México
| | | | - Luis A. Polindara-García
- Instituto de Química; Universidad Nacional Autónoma de México; Ciudad Universitaria 04510 Ciudad de México México
| |
Collapse
|
19
|
Zhou M, Zhu S, Zhou Q. Iodine‐Catalyzed Oxidative Rearrangement of Amines to α‐Amino Acetals and α‐Amino Aldehydes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Min‐Jie Zhou
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Shou‐Fei Zhu
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
| | - Qi‐Lin Zhou
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of ChemistryNankai University Tianjin 300071 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai University Tianjin 300071 People's Republic of China
| |
Collapse
|
20
|
He Y, Zheng Z, Liu Y, Qiao J, Zhang X, Fan X. Selective synthesis of β-nitrated N-heterocycles and N-nitroso-2-alkoxyamine aldehydes from inactivated cyclic amines promoted by tBuONO and oxoammonium salt. Chem Commun (Camb) 2019; 55:12372-12375. [DOI: 10.1039/c9cc05963f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Solvent-dependent-controlled selective synthesis of β-nitrated N-heterocycles and N-nitroso chain 2-alkoxyamine aldehydes has been successfully realized viatBuONO and oxoammonium salt promoted cascade reactions of inactivated cyclic amines.
Collapse
Affiliation(s)
- Yan He
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Zhi Zheng
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Yajie Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Jiajie Qiao
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control
- Ministry of Education
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Environment
| |
Collapse
|