1
|
Mirabi B, Li S, Ching J, Lenz M, Popovic SM, Lautens M. Stereodivergency in Copper-Catalyzed Borylative Difunctionalizations: The Impact of Boron Coordination. Angew Chem Int Ed Engl 2024; 63:e202411156. [PMID: 39136344 DOI: 10.1002/anie.202411156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 09/25/2024]
Abstract
A reagent-controlled diastereodivergent copper-catalyzed borylative difunctionalization is reported. The formation of Lewis adducts that guide selectivity is commonly invoked in organic reaction mechanisms. Using density functional theory calculations, we identified BpinBdan as a sterically similar and less Lewis acidic alternative to B2pin2. Using a newly developed borylative aldol domino reaction as the proof-of-concept, we demonstrate a change in stereochemical outcome by a simple change of borylating reagent-B2pin2 affords the diastereomer associated with coordination control while BpinBdan overturns this mode of binding. We show that this strategy can be generalized to other scaffolds and, more importantly, that BpinBdan does not alter the diastereomeric outcome of the reaction when coordination is not involved. BpinBdan can be viewed as a mechanistic probe for coordination in future copper-catalyzed borylation reactions.
Collapse
Affiliation(s)
- Bijan Mirabi
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Shangyu Li
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Justin Ching
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Madina Lenz
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Simon M Popovic
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Davenport Chemical Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
2
|
Zou L, Gao Y, Zhang Q, Ye XY, Xie T, Wang LW, Ye Y. Recent Progress in Asymmetric Domino Intramolecular Cyclization/Cascade Reactions of Substituted Olefins. Chem Asian J 2023; 18:e202300617. [PMID: 37462417 DOI: 10.1002/asia.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The domino cyclization/coupling strategy is one of the most effective methods to produce cyclized and multi-functionalized compounds from olefins, which has attracted huge attention from chemists and biochemists especially for its considerable potential of enantiocontrol. Nowadays, more and more studies are developed to achieve difunctionalization of substituted olefins through an asymmetric domino intramolecular cyclization/cascade reaction, which is still an elegant choice to accomplish several synthetic ideas such as complex natural products and drugs. This review surveys the recent advances in this field through reaction type classification. It might serve as useful knowledge desktop for the community and accelerate their research.
Collapse
Affiliation(s)
- Liang Zou
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, P. R. China
| | - Qiaoman Zhang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
3
|
Nishino S, Nishii Y, Hirano K. anti-Selective synthesis of β-boryl-α-amino acid derivatives by Cu-catalysed borylamination of α,β-unsaturated esters. Chem Sci 2022; 13:14387-14394. [PMID: 36545143 PMCID: PMC9749109 DOI: 10.1039/d2sc06003e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
A copper-catalysed regio- and diastereoselective borylamination of α,β-unsaturated esters with B2pin2 and hydroxylamines has been developed to deliver acyclic β-boryl-α-amino acid derivatives with high anti-diastereoselectivity (up to >99 : 1), which is difficult to obtain by the established methods. A chiral phosphoramidite ligand also successfully induces the enantioselectivity, giving the optically active β-borylated α-amino acids. The products can be stereospecifically transformed into β-functionalised α-amino acids, which are of potent interest in medicinal chemistry.
Collapse
Affiliation(s)
- Soshi Nishino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
4
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
6
|
Shen MH, Wan TB, Huang XR, Li Y, Qian DH, Xu HD, Xu D. Copper catalyzed borylative cyclization of 3-arylallyl carbamoyl chloride with B2pin2: stereoselective synthesis of cis-2-aryl-3-boryl-γ-lactams. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Dherbassy Q, Manna S, Shi C, Prasitwatcharakorn W, Crisenza GEM, Perry GJP, Procter DJ. Enantioselective Copper-Catalyzed Borylative Cyclization for the Synthesis of Quinazolinones. Angew Chem Int Ed Engl 2021; 60:14355-14359. [PMID: 33847459 PMCID: PMC8252434 DOI: 10.1002/anie.202103259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Indexed: 12/15/2022]
Abstract
Quinazolinones are common substructures in molecules of medicinal importance. We report an enantioselective copper-catalyzed borylative cyclization for the assembly of privileged pyrroloquinazolinone motifs. The reaction proceeds with high enantio- and diastereocontrol, and can deliver products containing quaternary stereocenters. The utility of the products is demonstrated through further manipulations.
Collapse
Affiliation(s)
- Quentin Dherbassy
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Srimanta Manna
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Chunling Shi
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
- School of Material and Chemical EngineeringXuzhou University of TechnologyXuzhou221018P.R. China
| | | | | | - Gregory J. P. Perry
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - David J. Procter
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
8
|
Dherbassy Q, Manna S, Shi C, Prasitwatcharakorn W, Crisenza GEM, Perry GJP, Procter DJ. Enantioselective Copper‐Catalyzed Borylative Cyclization for the Synthesis of Quinazolinones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Quentin Dherbassy
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Srimanta Manna
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Chunling Shi
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
- School of Material and Chemical Engineering Xuzhou University of Technology Xuzhou 221018 P.R. China
| | | | | | - Gregory J. P. Perry
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - David J. Procter
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
9
|
Rodgers G, Wilson EJ, Robertson CC, Cox DJ, Partridge BM. Synthesis of Boronic Ester γ‐Lactam Building Blocks. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- George Rodgers
- Department of Chemistry University of Sheffield, Dainton Building Sheffield S3 7HF United Kingdom
| | - Ellen J. Wilson
- Department of Chemistry University of Sheffield, Dainton Building Sheffield S3 7HF United Kingdom
| | - Craig C. Robertson
- Department of Chemistry University of Sheffield, Dainton Building Sheffield S3 7HF United Kingdom
| | - Daniel J. Cox
- Redbrick Molecular Ltd. 217 Portobello Sheffield S1 4DP United Kingdom
| | - Benjamin M. Partridge
- Department of Chemistry University of Sheffield, Dainton Building Sheffield S3 7HF United Kingdom
| |
Collapse
|
10
|
Larin EM, Torelli A, Loup J, Lautens M. One-Pot, Three-Step Synthesis of Benzoxazinones via Use of the Bpin Group as a Masked Nucleophile. Org Lett 2021; 23:2720-2725. [PMID: 33689389 DOI: 10.1021/acs.orglett.1c00623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The utilization of the Bpin group as a pronucleophile to facilitate the assembly of cyclic carbamates has been achieved. This one-pot process involves an initial copper-catalyzed borylation, a subsequent C-B bond oxidation to generate the reactive alcohol intermediate, and a cyclization. We report the use of this efficient, scalable, and simple method toward the synthesis of a wide range of benzoxazinone scaffolds, including enantioselective results. Subsequent transformations into useful scaffolds showcase the utility of this strategy.
Collapse
Affiliation(s)
- Egor M Larin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Joachim Loup
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
11
|
Whyte A, Torelli A, Mirabi B, Zhang A, Lautens M. Copper-Catalyzed Borylative Difunctionalization of π-Systems. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02758] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Anji Zhang
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
12
|
Larin EM, Loup J, Polishchuk I, Ross RJ, Whyte A, Lautens M. Enantio- and diastereoselective conjugate borylation/Mannich cyclization. Chem Sci 2020; 11:5716-5723. [PMID: 34094079 PMCID: PMC8159378 DOI: 10.1039/d0sc02421j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Strategies to capitalize on enolate intermediates generated from stereoselective conjugate borylation to α,β-unsaturated carbonyl systems are surprisingly rare despite the ubiquity of Michael acceptors, and the potential to generate valuable scaffolds bearing multiple stereocenters. Herein, we report a mild and stereoselective copper-catalyzed conjugate borylation/Mannich cyclization reaction. This strategy is feasible with a broad range of Michael acceptors, and can be leveraged to generate versatile borylated tetrahydroquinoline scaffolds bearing three contiguous stereocenters. The synthetic potential of these complex heterocycles has been explored through a series of derivatization studies. Copper-catalyzed enantio- and diastereoselective conjugate borylation across Michael acceptors, with subsequent Mannich-type cyclization, was utilized to construct tetrahydroquinoline scaffolds containing three contiguous stereocenters.![]()
Collapse
Affiliation(s)
- Egor M Larin
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Joachim Loup
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Iuliia Polishchuk
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Rachel J Ross
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Andrew Whyte
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Davenport Laboratories, Department of Chemistry, University of Toronto 80 St. George St. Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
13
|
Manna S, Dherbassy Q, Perry GJP, Procter DJ. Enantio- and Diastereoselective Synthesis of Homopropargyl Amines by Copper-Catalyzed Coupling of Imines, 1,3-Enynes, and Diborons. Angew Chem Int Ed Engl 2020; 59:4879-4882. [PMID: 31917893 PMCID: PMC7383811 DOI: 10.1002/anie.201915191] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Indexed: 12/16/2022]
Abstract
An efficient, enantio- and diastereoselective, copper-catalyzed coupling of imines, 1,3-enynes, and diborons is reported. The process shows broad substrate scope and delivers complex, chiral homopropargyl amines; useful building blocks on the way to biologically-relevant compounds. In particular, functionalized homopropargyl amines bearing up to three contiguous stereocenters can be prepared in a single step.
Collapse
Affiliation(s)
- Srimanta Manna
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Quentin Dherbassy
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Gregory J. P. Perry
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - David J. Procter
- Department of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
14
|
Manna S, Dherbassy Q, Perry GJP, Procter DJ. Enantio‐ and Diastereoselective Synthesis of Homopropargyl Amines by Copper‐Catalyzed Coupling of Imines, 1,3‐Enynes, and Diborons. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Srimanta Manna
- Department of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Quentin Dherbassy
- Department of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gregory J. P. Perry
- Department of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - David J. Procter
- Department of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
15
|
A unified approach for divergent synthesis of contiguous stereodiads employing a small boronyl group. Nat Commun 2020; 11:792. [PMID: 32034155 PMCID: PMC7005891 DOI: 10.1038/s41467-020-14592-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/13/2020] [Indexed: 11/29/2022] Open
Abstract
Acyclic contiguous stereocenters are frequently seen in biologically active natural and synthetic molecules. Although various synthetic methods have been reported, predictable and unified approaches to all possible stereoisomers are rare, particularly for those containing non-reactive hydrocarbon substituents. Herein, a β-boronyl group is employed as a readily accessible handle for predictable α-functionalization of enolates with either syn or anti selectivity depending on reaction conditions. Contiguous tertiary-tertiary and tertiary-quaternary stereocenters are thus accessed in generally good yields and diastereoselectivity. Based on experimental and computational studies, mechanism for syn selective alkylation is proposed, and Bpin (pinacolatoboronyl) behaves as a smaller group than most carbon-centered groups. The synthetic utility of this methodology is demonstrated by preparation of several key intermediates for bioactive molecules. Predictable and unified approaches to all possible stereoisomers of acyclic compounds with contiguous stereocentres are rare. Here, the authors disclose a divergent α-functionalization of enolates with either syn or anti selectivity employing a β-boronyl group as a small, directing handle.
Collapse
|