1
|
Ma L, Song H, Gong X, Chen L, Gong J, Chen Z, Shen J, Gu M. A High-Methanol-Permeation Resistivity Polyamide-Based Proton Exchange Membrane Fabricated via a Hyperbranching Design. Polymers (Basel) 2024; 16:2480. [PMID: 39274112 PMCID: PMC11397882 DOI: 10.3390/polym16172480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Four non-fluorinated sulfonimide polyamides (s-PAs) were successfully synthesized and a series of membranes were prepared by blending s-PA with polyvinylidene fluoride (PVDF) to achieve high-methanol-permeation resistivity for direct methanol fuel cell (DMFC) applications. Four membranes were fabricated by blending 50 wt% PVDF with s-PA, named BPD-101, BPD-102, BPD-111 and BPD-211, respectively. The s-PA/PVDF membranes exhibit high methanol resistivity, especially for the BPD-111 membrane with methanol resistivity of 8.13 × 10-7 cm2/s, which is one order of magnitude smaller than that of the Nafion 117 membrane. The tensile strength of the BPD-111 membrane is 15 MPa, comparable to that of the Nafion 117 membrane. Moreover, the four membranes also show good thermal stability up to 230 °C. The BPD-x membrane exhibits good oxidative stability, and the measured residual weights of the BPD-111 membrane are 97% and 93% after treating in Fenton's reagent (80 °C) for 1 h and 24 h, respectively. By considering the mechanical, thermal and dimensional properties, the polyamide proton-exchange membrane exhibits promising application potential for direct methanol fuel cells.
Collapse
Affiliation(s)
- Liying Ma
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Hongxia Song
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Xiaofei Gong
- Kaili No. 8 Middle School, 70 Qingjiang Road, Kaili 556000, China
| | - Lu Chen
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Jiangning Gong
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Zhijiao Chen
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Jing Shen
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| | - Manqi Gu
- School of Chemistry and Materials Science, Guizhou Normal University, 116 Baoshan North Road, Guiyang 550001, China
| |
Collapse
|
2
|
Al-Mashhadani MHI, Salmanzade K, Tompos A, Selim A. Promising Fluorine-Free Ion Exchange Membranes Based on a Poly(ether-block-amide) Copolymer and Sulfonated Montmorillonite: Influence of Different Copolymer Segment Ratios. MEMBRANES 2024; 14:17. [PMID: 38248707 PMCID: PMC10820341 DOI: 10.3390/membranes14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
Novel composite membranes employing a poly(ether-block-amide) (PEBAX) copolymer and sulfonated montmorillonite (S-MMT) as a filler were developed. The ratio of polyether to polyamide blocks was investigated using PEBAX 2533 and PEBAX 4533 based on the membrane properties and performance. Additionally, the effect of the changing filler ratio was monitored. The interaction between the S-MMT as nanofiller and the polymer matrix of PEBAX2533 and PEBAX4533 as well as the crystalline nature and thermal and mechanical stability of the composite membranes were evaluated using Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and tensile test. The composite membrane with 7 wt.% S-MMT showed the highest water uptake of 21% and 16% and an acceptable swelling degree of 16% and 9% for PEBAX 2533 and PEBAX 4533 composite membranes, respectively. In terms of water uptake and ion exchange capacity at room temperature, the new un-protonated membranes are superior to un-protonated Nafion. Meanwhile, with the same S-MMT content, the ion conductivity of PEBAX 2533 and PEBAX 4533 composite membranes is 2 and 1.6 mS/cm, and their ion exchange capacity is 0.9 and 1.10 meq/g.
Collapse
Affiliation(s)
- Manhal H. Ibrahim Al-Mashhadani
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (K.S.); (A.S.)
- Hevesy György Doctoral School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
- Institute of Laser for Postgraduate Studies, University of Baghdad, 10070 Baghdad, Iraq
| | - Khirdakhanim Salmanzade
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (K.S.); (A.S.)
| | - András Tompos
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (K.S.); (A.S.)
| | - Asmaa Selim
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary; (M.H.I.A.-M.); (K.S.); (A.S.)
- Chemical Engineering and Pilot Plat Department, Engineering and Renewable Energy Research Institute, National Research Centre, 33 El Bohouth Street, Giza 12622, Egypt
| |
Collapse
|
3
|
Ban T, Guo M, Wang Y, Zhang Y, Zhu X. High-performance aromatic proton exchange membranes bearing multiple flexible pendant sulfonate groups: Exploring side chain length and main chain polarity. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
4
|
Xue B, Zhu MZ, Fu SQ, Huang PP, Qian H, Liu PN. Facile synthesis of sulfonated poly(phenyl-alkane)s for proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Bosson K, Marcasuzaa P, Bousquet A, Tovar GE, Atanasov V, Billon L. para fluoro-thiol clicked diblock-copolymer self-assembly: Towards a new paradigm for highly proton-conductive membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Duan Y, Ru C, Pang Y, Li J, Liu B, Zhao C. Crosslinked PAEK-based nanofiber reinforced Nafion membrane with ion-paired interfaces towards high-concentration DMFC. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Yang X, Kim JH, Kim YJ. Enhanced proton conductivity of poly(ether sulfone) multi-block copolymers grafted with densely pendant sulfoalkoxyl side chains for proton exchange membranes. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Chemically sustainable fuel cells via layer-by-layer fabrication of sulfonated poly(arylene ether sulfone) membranes containing cerium oxide nanoparticles. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119430] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Ozaytekin I. Improving proton conductivity of poly(oxyphenylene benzimidazole) membranes with sulfonation and magnetite addition. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00960-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Ma M, Liu X, Li C, Qiao Z, Yuan Q, Huang F. Effects of pendant side groups on the properties of the silicon-containing arylacetylene resins with 2,5-diphenyl-[1,3,4]-oxadiazole moieties. RSC Adv 2021; 11:19656-19665. [PMID: 35479219 PMCID: PMC9033566 DOI: 10.1039/d1ra02184b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/23/2021] [Indexed: 12/16/2022] Open
Abstract
Silicon-containing arylacetylene resins with rigid conjugated structures in the main chain often exhibit poor processability. A strategy of improving the processability by destroying the molecular structure symmetry using side aromatic groups was proposed, and the effects of the side groups was further explored. Two novel structural resins with side aromatic phenyl and phenylacetylene groups (PODSA-2P-MM and PODSA-2E-MM) were synthesized by Grignard reaction. The side aromatic groups strongly interfere with the regular arrangement of the main chains, and the crystallinities of the resins decrease as compared with PODSA-MM resin without side aromatic groups. Due to the influence of the side aromatic groups, the novel resins exhibit good processability, low exothermic enthalpy, high modulus and good heat resistance.
Collapse
Affiliation(s)
- Manping Ma
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry Education, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xiaotian Liu
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry Education, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Chuan Li
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry Education, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zhiyao Qiao
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry Education, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Qiaolong Yuan
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry Education, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Farong Huang
- Key Laboratory for Specially Functional Materials and Related Technology of the Ministry Education, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
11
|
Liu L, Pu Y, Lu Y, Li N, Hu Z, Chen S. Superacid sulfated SnO2 doped with CeO2: A novel inorganic filler to simultaneously enhance conductivity and stabilities of proton exchange membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118972] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Yuan D, Qin Y, Li S, Du S, Xu Y, Weng Q, Chen P, Chen X, An Z. Enhanced performance of proton-conducting poly(arylene ether sulfone)s via multiple alkylsulfonated side-chains and block copolymer structures. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118932] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Hu Y, Yan L, Yue B. Chain-scission degradation mechanisms during sulfonation of aromatic polymers for PEMFC applications. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2020.111049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
|
15
|
Wang Y, Chen P, Weng Q, Chen X, An Z. Quinoxaline-based semi-interpenetrating polymer network of sulfonated poly(arylene ether)s and sulfonated polyimides as proton exchange membranes. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03320-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Hu Y, Yan L, Yue B. Sulfonation Mechanism of Polysulfone in Concentrated Sulfuric Acid for Proton Exchange Membrane Fuel cell Applications. ACS OMEGA 2020; 5:13219-13223. [PMID: 32548508 PMCID: PMC7288593 DOI: 10.1021/acsomega.0c01252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/12/2020] [Indexed: 05/22/2023]
Abstract
The sulfonated polysulfone is a competitive proton-conducting material for proton exchange membrane fuel cells because of its relatively low cost and adequate performance compared with the perfluorinated sulfonic acid ionomers. This material can be economically synthesized by postsulfonation of commercial polysulfone; however, the inadequate sulfonation degree and the chain-scission degradation during sulfonation prevent the further optimization of its overall performance. In this work, the sulfonation mechanism of polysulfone is studied in terms of the transition state and activation energy based on density functional theory calculations, and the optimization of sulfonation processing parameters are discussed.
Collapse
Affiliation(s)
- Yidong Hu
- Department
of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Liuming Yan
- Department
of Chemistry, College of sciences, Shanghai
University, 99 Shangda Road, Shanghai 200444, China
- . Tel. No.: 8621-66132405. Fax: 8621-66132405
| | - Baohua Yue
- Department
of Chemistry, College of sciences, Shanghai
University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
17
|
Xu J, Zhang Z, Yang K, He W, Yang X, Du X, Meng L, Zhao P, Wang Z. Construction of new transport channels by blending POM-based inorganic-organic complex into sulfonated poly(ether ketone sulfone) for proton exchange membrane fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Wang S, He F, Weng Q, Yuan D, Chen P, Chen X, An Z. Synthesis and characterization of a novel crosslinkable side-chain sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes. RSC Adv 2020; 10:24772-24783. [PMID: 35517481 PMCID: PMC9055182 DOI: 10.1039/d0ra02987d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/28/2020] [Indexed: 11/21/2022] Open
Abstract
A series of novel crosslinkable side-chain sulfonated poly(arylene ether sulfone) copolymers (S-SPAES(x/y)) was prepared from 4,4′-biphenol, 4,4′-difluorodiphenyl sulfone, and a new difluoro aromatic monomer 1-(2,6-difluorophenyl)-2-(3,5-dimethoxyphenyl)-1,2-ethanedione (DFDMED) via co-polycondensation, demethylation, and further nucleophilic substitution of 1,4-butane sultone. Meanwhile, quinoxaline-based crosslinked copolymers (CS-SPAES(x/y)) were obtained via cyclo-condensation between S-SPAES(x/y) and 3,3′-diaminobenzidine. Both the crosslinkable and crosslinked copolymer membranes exhibit good mechanical properties and high anisotropic membrane swelling. Crosslinkable S-SPAES(1/2) with an ion exchange capacity (IEC) of 2.01 mequiv. g−1 displays a relatively high proton conductivity of 180 mS cm−1 and acceptable single-cell performance, which is attributed to its good microphase separation resulting from the side-chain sulfonated copolymer structures. Compared with S-SPAES(1/1) (IEC of 1.68 mequiv. g−1), crosslinked CS-SPAES(1/2) with a comparable IEC exhibits a larger conductivity of 157 mS cm−1, and significantly higher oxidative stability and lower membrane swelling, suggesting a distinct performance improvement due to the quinoxaline-based crosslinking. A series of novel crosslinkable and crosslinked side-chain SPAES has been prepared. The S-SPAES(1/2) has high proton conductivity and acceptable single-cell performance.![]()
Collapse
Affiliation(s)
- Shouping Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Fugang He
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Qiang Weng
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Diao Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Pei Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Xinbing Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Zhongwei An
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| |
Collapse
|
19
|
|
20
|
Liu J, Yan X, Gao L, Hu L, Wu X, Dai Y, Ruan X, He G. Long-branched and densely functionalized anion exchange membranes for fuel cells. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Mao T, Wang S, Wang X, Liu F, Li J, Chen H, Wang D, Liu G, Xu J, Wang Z. High-Temperature and All-Solid-State Flexible Supercapacitors with Excellent Long-Term Stability Based on Porous Polybenzimidazole/Functional Ionic Liquid Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17742-17750. [PMID: 31013422 DOI: 10.1021/acsami.9b00452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A high-performance solid-state electrolyte was obtained using porous polybenzimidazole (pPBI) and ionic liquid (IL) (i.e., (1-(3-trimethoxysilylpropyl)-3-methylimidazolium chloride). IL is hydrolyzed to form Si-O-Si networks under acidic conditions, which guarantee the enhanced mechanical properties. The porous structure and Si-O-Si networks improve the acid retention capacity and conductivity simultaneously. The prepared porous composite film exhibits a proton conductivity as high as 0.103 S cm-1 at 170 °C. Then, an all-solid-state supercapacitor (ASSC) was assembled using the obtained film electrolyte and activated carbon electrodes. The electrochemical performance was evaluated at different temperatures (30, 60, 90, 120, and 150 °C). The prepared ASSC displayed a specific capacitance of 85.5 F g-1 at 120 °C, which is 3 times higher than that at 30 °C. Meanwhile, the ASSC displayed excellent long-term cycle stability after 10 000 constant current charge and discharge tests, 91.0% capacitance retention, and 95.8% coulomb efficiency. All the results indicate that the porous polymer electrolyte is promising for application in high-temperature energy-storage devices.
Collapse
Affiliation(s)
- Tiejun Mao
- College of Chemical Engineering , Changchun University of Technology , Changchun 130012 , People's Republic of China
| | - Shuang Wang
- College of Chemical Engineering , Changchun University of Technology , Changchun 130012 , People's Republic of China
- Advanced Institute of Materials Science , Changchun University of Technology , Changchun 130012 , People's Republic of China
| | - Xu Wang
- College of Chemical Engineering , Changchun University of Technology , Changchun 130012 , People's Republic of China
| | - Fengxiang Liu
- Advanced Institute of Materials Science , Changchun University of Technology , Changchun 130012 , People's Republic of China
| | - Jinsheng Li
- College of Chemical Engineering , Changchun University of Technology , Changchun 130012 , People's Republic of China
| | - Hao Chen
- College of Chemical Engineering , Changchun University of Technology , Changchun 130012 , People's Republic of China
| | - Di Wang
- College of Chemical Engineering , Changchun University of Technology , Changchun 130012 , People's Republic of China
| | - Geng Liu
- College of Chemical Engineering , Changchun University of Technology , Changchun 130012 , People's Republic of China
| | - Jingmei Xu
- College of Chemical Engineering , Changchun University of Technology , Changchun 130012 , People's Republic of China
- Advanced Institute of Materials Science , Changchun University of Technology , Changchun 130012 , People's Republic of China
| | - Zhe Wang
- College of Chemical Engineering , Changchun University of Technology , Changchun 130012 , People's Republic of China
- Advanced Institute of Materials Science , Changchun University of Technology , Changchun 130012 , People's Republic of China
| |
Collapse
|