1
|
Xu J, Hadjichristidis N. Heteroatom-containing degradable polymers by ring-opening metathesis polymerization. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
2
|
Stubbs C, Worch JC, Prydderch H, Wang Z, Mathers RT, Dobrynin AV, Becker ML, Dove AP. Sugar-Based Polymers with Stereochemistry-Dependent Degradability and Mechanical Properties. J Am Chem Soc 2022; 144:1243-1250. [PMID: 35029980 PMCID: PMC8796236 DOI: 10.1021/jacs.1c10278] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 12/22/2022]
Abstract
Stereochemistry in polymers can be used as an effective tool to control the mechanical and physical properties of the resulting materials. Typically, though, in synthetic polymers, differences among polymer stereoisomers leads to incremental property variation, i.e., no changes to the baseline plastic or elastic behavior. Here we show that stereochemical differences in sugar-based monomers yield a family of nonsegmented, alternating polyurethanes that can be either strong amorphous thermoplastic elastomers with properties that exceed most cross-linked rubbers or robust, semicrystalline thermoplastics with properties comparable to commercial plastics. The stereochemical differences in the monomers direct distinct intra- and interchain supramolecular hydrogen-bonding interactions in the bulk materials to define their behavior. The chemical similarity among these isohexide-based polymers enables both statistical copolymerization and blending, which each afford independent control over degradability and mechanical properties. The modular molecular design of the polymers provides an opportunity to create a family of materials with divergent properties that possess inherently built degradability and outstanding mechanical performance.
Collapse
Affiliation(s)
- Connor
J. Stubbs
- School
of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Joshua C. Worch
- School
of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Hannah Prydderch
- School
of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| | - Zilu Wang
- Department
of Chemistry, University of North Carolina−Chapel
Hill, Chapel
Hill, North Carolina 27599, United States
| | - Robert T. Mathers
- Department
of Chemistry, Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| | - Andrey V. Dobrynin
- Department
of Chemistry, University of North Carolina−Chapel
Hill, Chapel
Hill, North Carolina 27599, United States
| | - Matthew L. Becker
- Department
of Chemistry, Mechanical Engineering and Materials Science, Biomedical
Engineering and Orthopedic Surgery, Duke
University, Durham, North Carolina 20899, United States
| | - Andrew P. Dove
- School
of Chemistry, The University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K.
| |
Collapse
|
3
|
Lu Y, Swisher JH, Meyer TY, Coates GW. Chirality-Directed Regioselectivity: An Approach for the Synthesis of Alternating Poly(Lactic-co-Glycolic Acid). J Am Chem Soc 2021; 143:4119-4124. [DOI: 10.1021/jacs.1c00248] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yiye Lu
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Jordan H. Swisher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260-8929, United States
| | - Tara Y. Meyer
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260-8929, United States
| | - Geoffrey W. Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
4
|
A brief minireview of poly-triazole: Alkyne and azide substrate selective, metal-catalyst expansion. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
A novel double polymer modified hydrophobic/hydrophilic stationary phase for liquid chromatography. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.08.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Nowalk JA, Swisher JH, Meyer TY. Influence of Short-Range Scrambling of Monomer Order on the Hydrolysis Behaviors of Sequenced Degradable Polyesters. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jamie A. Nowalk
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jordan H. Swisher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tara Y. Meyer
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
7
|
Nowalk JA, Fang C, Short AL, Weiss RM, Swisher JH, Liu P, Meyer TY. Sequence-Controlled Polymers Through Entropy-Driven Ring-Opening Metathesis Polymerization: Theory, Molecular Weight Control, and Monomer Design. J Am Chem Soc 2019; 141:5741-5752. [PMID: 30714723 PMCID: PMC6685222 DOI: 10.1021/jacs.8b13120] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bulk properties of a copolymer are directly affected by monomer sequence, yet efficient, scalable, and controllable syntheses of sequenced copolymers remain a defining challenge in polymer science. We have previously demonstrated, using polymers prepared by a step-growth synthesis, that hydrolytic degradation of poly(lactic- co-glycolic acid)s is dramatically affected by sequence. While much was learned, the step-growth mechanism gave no molecular weight control, unpredictable yields, and meager scalability. Herein, we describe the synthesis of closely related sequenced polyesters prepared by entropy-driven ring-opening metathesis polymerization (ED-ROMP) of strainless macromonomers with imbedded monomer sequences of lactic, glycolic, 6-hydroxy hexanoic, and syringic acids. The incorporation of ethylene glycol and metathesis linkers facilitated synthesis and provided the olefin functionality needed for ED-ROMP. Ring-closing to prepare the cyclic macromonomers was demonstrated using both ring-closing metathesis and macrolactonization reactions. Polymerization produced macromolecules with controlled molecular weights on a multigram scale. To further enhance molecular weight control, the macromonomers were prepared with cis-olefins in the metathesis-active segment. Under these selectivity-enhanced (SEED-ROMP) conditions, first-order kinetics and narrow dispersities were observed and the effect of catalyst initiation rate on the polymerization was investigated. Enhanced living character was further demonstrated through the preparation of block copolymers. Computational analysis suggested that the enhanced polymerization kinetics were due to the cis-macrocyclic olefin being less flexible and having a larger population of metathesis-reactive conformers. Although used for polyesters in this investigation, SEED-ROMP represents a general method for incorporation of sequenced segments into molecular weight-controlled polymers.
Collapse
Affiliation(s)
- Jamie A. Nowalk
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Cheng Fang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Computational Modeling & Simulation Program, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Amy L. Short
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ryan M. Weiss
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jordan H. Swisher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tara Yvonne Meyer
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15219, United States
| |
Collapse
|