1
|
Cai Y, Binder WH. Triggered Crosslinking of Main-Chain Enediyne Polyurethanes via Bergman Cyclization. Macromol Rapid Commun 2023; 44:e2300440. [PMID: 37877520 DOI: 10.1002/marc.202300440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/23/2023] [Indexed: 10/26/2023]
Abstract
Crosslinking chemistries occupy an important position in polymer modification with a particular importance when triggered in response to external stimuli. Enediyne (EDY) moieties are used as functional entities in this work, known to undergo a pericyclic Bergman cyclization (BC) to induce a triggered crosslinking of polyurethanes (PU) via the intermediately formed diradicals. Diamino-EDYs, where the distance between the enyne-moieties is known to be critical to induce a BC, are placed repetitively as main-chain structural elements in isophorone-based PUs to induce reinforcement upon heating, compression, or stretching. A 7-day compression under room temperature results in a ≈69% activation of the BC, together with the observation of an increase in tensile strength by 62% after 25 stretching cycles. The occurrence of BC is further proven by the decreased exothermic values in differential scanning calorimetry, together with characteristic peaks of the formed benzene moieties via IR spectroscopy. Purely heat-induced crosslinking contributes to 191% of the maximum tensile strength in comparison to the virgin PU. The BC herein forms an excellent crosslinking strategy, triggered by heat or force in PU materials.
Collapse
Affiliation(s)
- Yue Cai
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle (Saale), Germany
| | - Wolfgang H Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120, Halle (Saale), Germany
| |
Collapse
|
2
|
Guo Y, Zhao L, Bi M, Zhang B, Guo K, Miao L, Cai C, Chen L, Shi X, Cheng W. Molecular volume-controlled shape-selective catalysis for synthesis of cinnamate over microporous zeolites. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Wang T, Wang H, Shen L, Zhang N. Force-induced strengthening of a mechanochromic polymer based on a naphthalene-fused cyclobutane mechanophore. Chem Commun (Camb) 2021; 57:12675-12678. [PMID: 34779466 DOI: 10.1039/d1cc05305a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discovered a force-induced strengthening of a mechanochromic polymer based on a naphthalene-fused cyclobutane mechanophore (NCD). Our results revealed that mechanically induced retro-cycloaddition of the NCD and subsequent crosslinking reactions between CC bonds were responsible for this peculiar strenghthening, and demonstrated the good possibility that the NCD can be applied in smart materials fields.
Collapse
Affiliation(s)
- Taisheng Wang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China. .,Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 211167, P. R. China
| | - Haoxiang Wang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China.
| | - Lei Shen
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China.
| | - Na Zhang
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, P. R. China. .,Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing, 211167, P. R. China
| |
Collapse
|
4
|
Bowser BH, Wang S, Kouznetsova TB, Beech HK, Olsen BD, Rubinstein M, Craig SL. Single-Event Spectroscopy and Unravelling Kinetics of Covalent Domains Based on Cyclobutane Mechanophores. J Am Chem Soc 2021; 143:5269-5276. [PMID: 33783187 DOI: 10.1021/jacs.1c02149] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanochemical reactions that lead to an increase in polymer contour length have the potential to serve as covalent synthetic mimics of the mechanical unfolding of noncovalent "stored length" domains in structural proteins. Here we report the force-dependent kinetics of stored length release in a family of covalent domain polymers based on cis-1,2-substituted cyclobutane mechanophores. The stored length is determined by the size (n) of a fused ring in an [n.2.0] bicyclic architecture, and it can be made sufficiently large (>3 nm per event) that individual unravelling events are resolved in both constant-velocity and constant-force single-molecule force spectroscopy (SMFS) experiments. Replacing a methylene in the pulling attachment with a phenyl group drops the force necessary to achieve rate constants of 1 s-1 from ca. 1970 pN (dialkyl handles) to 630 pN (diaryl handles), and the substituent effect is attributed to a combination of electronic stabilization and mechanical leverage effects. In contrast, the kinetics are negligibly perturbed by changes in the amount of stored length. The independent control of unravelling force and extension holds promise as a probe of molecular behavior in polymer networks and for optimizing the behaviors of materials made from covalent domain polymers.
Collapse
Affiliation(s)
- Brandon H Bowser
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shu Wang
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tatiana B Kouznetsova
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Haley K Beech
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D Olsen
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Physics, Mechanical Engineering and Materials Science, and Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States.,World Premier Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
| | - Stephen L Craig
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
5
|
Wang T, Wang H, Shen L, Zhang N. Multicolor mechanochromism of a multinetwork elastomer that can distinguish between low and high stress. Polym Chem 2021. [DOI: 10.1039/d1py00637a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report our findings on a multicolor mechanochromic elastomer that is able to discriminate between low and high stress. The key point of our design depends on the introduction of two UV-inert mechanophores into different polymer networks.
Collapse
Affiliation(s)
- Taisheng Wang
- School of Materials Science and Engineering
- Nanjing Institute of Technology
- Nanjing
- P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology
| | - Haoxiang Wang
- School of Materials Science and Engineering
- Nanjing Institute of Technology
- Nanjing
- P. R. China
| | - Lei Shen
- School of Materials Science and Engineering
- Nanjing Institute of Technology
- Nanjing
- P. R. China
| | - Na Zhang
- School of Materials Science and Engineering
- Nanjing Institute of Technology
- Nanjing
- P. R. China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology
| |
Collapse
|
6
|
Chen Y, Mellot G, van Luijk D, Creton C, Sijbesma RP. Mechanochemical tools for polymer materials. Chem Soc Rev 2021; 50:4100-4140. [DOI: 10.1039/d0cs00940g] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review aims to provide a field guide for the implementation of mechanochemistry in synthetic polymers by summarizing the molecules, materials, and methods that have been developed in this field.
Collapse
Affiliation(s)
- Yinjun Chen
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Gaëlle Mellot
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Diederik van Luijk
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Rint P. Sijbesma
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
7
|
Sha Y, Zhang H, Zhou Z, Luo Z. Stress-responsive properties of metallocenes in metallopolymers. Polym Chem 2021. [DOI: 10.1039/d1py00311a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review article combines the field of metallopolymers and stress-responsiveness on a molecular level, namely, metallocenes, as emerging stress-responsive building blocks for materials.
Collapse
Affiliation(s)
- Ye Sha
- College of Science
- Nanjing Forestry University
- Nanjing
- PR China
| | - Hao Zhang
- College of Science
- Nanjing Forestry University
- Nanjing
- PR China
| | - Zhou Zhou
- College of Science
- Nanjing Forestry University
- Nanjing
- PR China
| | - Zhenyang Luo
- College of Science
- Nanjing Forestry University
- Nanjing
- PR China
| |
Collapse
|
8
|
Pan Y, Zhang H, Xu P, Tian Y, Wang C, Xiang S, Boulatov R, Weng W. A Mechanochemical Reaction Cascade for Controlling Load-Strengthening of a Mechanochromic Polymer. Angew Chem Int Ed Engl 2020; 59:21980-21985. [PMID: 32827332 PMCID: PMC7756483 DOI: 10.1002/anie.202010043] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Indexed: 11/08/2022]
Abstract
We demonstrate an intermolecular reaction cascade to control the force which triggers crosslinking of a mechanochromic polymer of spirothiopyran (STP). Mechanochromism arises from rapid reversible force-sensitive isomerization of STP to a merocyanine, which reacts rapidly with activated C=C bonds. The concentration of such bonds, and hence the crosslinking rate, is controlled by force-dependent dissociation of a Diels-Alder adduct of anthracene and maleimide. Because the adduct requires ca. 1 nN higher force to dissociate at the same rate as that of STP isomerization, the cascade limits crosslinking to overstressed regions of the material, which are at the highest rate of material damage. Using comb polymers decreased the minimum concentration of mechanophores required to crosslinking by about 100-fold compared to previous examples of load-strengthening materials. The approach described has potential for controlling a broad range of reaction sequences triggered by mechanical load.
Collapse
Affiliation(s)
- Yifei Pan
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University422 South Siming RoadXiamenFujian361005P. R. China
| | - Huan Zhang
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University422 South Siming RoadXiamenFujian361005P. R. China
| | - Piaoxue Xu
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University422 South Siming RoadXiamenFujian361005P. R. China
| | - Yancong Tian
- Department of ChemistryUniversity of Liverpool and Donnan LabG31, Crown St.LiverpoolL69 7ZDUK
| | - Chenxu Wang
- Department of ChemistryUniversity of Liverpool and Donnan LabG31, Crown St.LiverpoolL69 7ZDUK
| | - Shishuai Xiang
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University422 South Siming RoadXiamenFujian361005P. R. China
| | - Roman Boulatov
- Department of ChemistryUniversity of Liverpool and Donnan LabG31, Crown St.LiverpoolL69 7ZDUK
| | - Wengui Weng
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University422 South Siming RoadXiamenFujian361005P. R. China
| |
Collapse
|
9
|
Tian Y, Cao X, Li X, Zhang H, Sun CL, Xu Y, Weng W, Zhang W, Boulatov R. A Polymer with Mechanochemically Active Hidden Length. J Am Chem Soc 2020; 142:18687-18697. [PMID: 33064473 PMCID: PMC7596784 DOI: 10.1021/jacs.0c09220] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Incorporating hidden length into polymer chains can improve their mechanical properties, because release of the hidden length under mechanical loads enables localized strain relief without chain fracture. To date, the design of hidden length has focused primarily on the choice of the sacrificial bonds holding the hidden length together. Here we demonstrate the advantages of adding mechanochemical reactivity to hidden length itself, using a new mechanophore that integrates (Z)-2,3-diphenylcyclobutene-1,4-dicarboxylate, with hitherto unknown mechanochemistry, into macrocyclic cinnamate dimers. Stretching a polymer of this mechanophore more than doubles the chain contour length without fracture. DFT calculations indicate that the sequential dissociation of the dimer, followed by cyclobutene isomerization at higher forces yields a chain fracture energy 11 times that of a simple polyester of the same initial contour length and preserves high energy-dissipating capacity up to ∼3 nN. In sonicated solutions cyclobutene isomerizes to two distinct products by competing reaction paths, validating the computed mechanochemical mechanism and suggesting an experimental approach to quantifying the distribution of single-chain forces under diverse loading scenarios.
Collapse
Affiliation(s)
- Yancong Tian
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Xiaodong Cao
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xun Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Huan Zhang
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Cai-Li Sun
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Yuanze Xu
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Wengui Weng
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Roman Boulatov
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| |
Collapse
|
10
|
Pan Y, Zhang H, Xu P, Tian Y, Wang C, Xiang S, Boulatov R, Weng W. A Mechanochemical Reaction Cascade for Controlling Load‐Strengthening of a Mechanochromic Polymer. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yifei Pan
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Huan Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Piaoxue Xu
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Yancong Tian
- Department of Chemistry University of Liverpool and Donnan Lab G31, Crown St. Liverpool L69 7ZD UK
| | - Chenxu Wang
- Department of Chemistry University of Liverpool and Donnan Lab G31, Crown St. Liverpool L69 7ZD UK
| | - Shishuai Xiang
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| | - Roman Boulatov
- Department of Chemistry University of Liverpool and Donnan Lab G31, Crown St. Liverpool L69 7ZD UK
| | - Wengui Weng
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University 422 South Siming Road Xiamen Fujian 361005 P. R. China
| |
Collapse
|
11
|
Klein IM, Husic CC, Kovács DP, Choquette NJ, Robb MJ. Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry. J Am Chem Soc 2020; 142:16364-16381. [DOI: 10.1021/jacs.0c06868] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Isabel M. Klein
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Corey C. Husic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dávid P. Kovács
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nicolas J. Choquette
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Maxwell J. Robb
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Zhang Y, Lund E, Gossweiler GR, Lee B, Niu Z, Khripin C, Munch E, Couty M, Craig SL. Molecular Damage Detection in an Elastomer Nanocomposite with a Coumarin Dimer Mechanophore. Macromol Rapid Commun 2020; 42:e2000359. [PMID: 32761960 DOI: 10.1002/marc.202000359] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Molecular force probes that generate optical responses to critical levels of mechanical stress (mechanochromophores) are increasingly attractive tools for identifying molecular sites that are most prone to failure. Here, a coumarin dimer mechanophore whose mechanical strength is comparable to that of the sulfur-sulfur bonds found in vulcanized rubbers is reported. It is further shown that the strain-induced scission of the coumarin dimer within the matrix of a particle-reinforced polybutadiene-based co-polymer can be detected and quantified by fluorescence spectroscopy, when cylinders of the nanocomposite are subjected to unconstrained uniaxial stress. The extent of the scission suggests that the coumarin dimers are molecular "weak links" within the matrix, and, by analogy, sulfur bridges are likely to be the same in vulcanized rubbers. The mechanophore is embedded in polymer main chains, grafting agent, and cross-linker positions in a polymer composite in order to generate experimental data to understand how macroscopic mechanical stress is transferred at the molecular scale especially in highly entangled cross-linked polymer nanocomposite. Finally, the extent of activation is enhanced by approximately an order of magnitude by changing the regiochemistry and stereochemistry of the coumarin dimer and embedding the mechanophore at the heterointerface of the particle-reinforced elastomer.
Collapse
Affiliation(s)
- Yudi Zhang
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Ethen Lund
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT, 06511, USA
| | | | - Bobin Lee
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Zhenbin Niu
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | | | - Etienne Munch
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes Dechaux, 63000, Clermont-Ferrand, France
| | - Marc Couty
- Manufacture Française des Pneumatiques Michelin, 23, Place des Carmes Dechaux, 63000, Clermont-Ferrand, France
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
13
|
Nanoparticles Functionalized by Conducting Polymers and Their Electrorheological and Magnetorheological Applications. Polymers (Basel) 2020; 12:polym12010204. [PMID: 31941163 PMCID: PMC7023545 DOI: 10.3390/polym12010204] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/25/2019] [Accepted: 01/06/2020] [Indexed: 11/17/2022] Open
Abstract
Conducting polymer-coated nanoparticles used in electrorheological (ER) and magnetorheological (MR) fluids are reviewed along with their fabrication methods, morphologies, thermal properties, sedimentation stabilities, dielectric properties, and ER and MR characteristics under applied electric or magnetic fields. After functionalization of the conducting polymers, the nanoparticles exhibited properties suitable for use as ER materials, and materials in which magnetic particles are used as a core could also be applied as MR materials. The conducting polymers covered in this study included polyaniline and its derivatives, poly(3,4-ethylenedioxythiophene), poly(3-octylthiophene), polypyrrole, and poly(diphenylamine). The modified nanoparticles included polystyrene, poly(methyl methacrylate), silica, titanium dioxide, maghemite, magnetite, and nanoclay. This article reviews many core-shell structured conducting polymer-coated nanoparticles used in ER and MR fluids and is expected to contribute to the understanding and development of ER and MR materials.
Collapse
|
14
|
Izak-Nau E, Campagna D, Baumann C, Göstl R. Polymer mechanochemistry-enabled pericyclic reactions. Polym Chem 2020. [DOI: 10.1039/c9py01937e] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polymer mechanochemical pericyclic reactions are reviewed with regard to their structural features and substitution prerequisites to the polymer framework.
Collapse
Affiliation(s)
- Emilia Izak-Nau
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
| | - Davide Campagna
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
- Institute for Technical and Macromolecular Chemistry
- RWTH Aachen University
| | - Christoph Baumann
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
- Institute for Technical and Macromolecular Chemistry
- RWTH Aachen University
| | - Robert Göstl
- DWI – Leibniz Institute for Interactive Materials
- 52056 Aachen
- Germany
| |
Collapse
|