1
|
Roppolo I, Caprioli M, Pirri CF, Magdassi S. 3D Printing of Self-Healing Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305537. [PMID: 37877817 DOI: 10.1002/adma.202305537] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Indexed: 10/26/2023]
Abstract
This review article presents a comprehensive overview of the latest advances in the field of 3D printable structures with self-healing properties. Three-dimensional printing (3DP) is a versatile technology that enables the rapid manufacturing of complex geometric structures with precision and functionality not previously attainable. However, the application of 3DP technology is still limited by the availability of materials with customizable properties specifically designed for additive manufacturing. The addition of self-healing properties within 3D printed objects is of high interest as it can improve the performance and lifespan of structural components, and even enable the mimicking of living tissues for biomedical applications, such as organs printing. The review will discuss and analyze the most relevant results reported in recent years in the development of self-healing polymeric materials that can be processed via 3D printing. After introducing the chemical and physical self-healing mechanism that can be exploited, the literature review here reported will focus in particular on printability and repairing performances. At last, actual perspective and possible development field will be critically discussed.
Collapse
Affiliation(s)
- Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Matteo Caprioli
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| | - Candido F Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10129, Italy
- Istituto Italiano di Tecnologia, Center for Sustainable Futures @Polito, Via Livorno 60, Turin, 10144, Italy
| | - Shlomo Magdassi
- Casali Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9090145, Israel
| |
Collapse
|
2
|
Kolibaba TJ, Killgore JP, Caplins BW, Higgins CI, Arp U, Miller CC, Poster DL, Zong Y, Broce S, Wang T, Talačka V, Andersson J, Davenport A, Panzer MA, Tumbleston JR, Gonzalez JM, Huffstetler J, Lund BR, Billerbeck K, Clay AM, Fratarcangeli MR, Qi HJ, Porcincula DH, Bezek LB, Kikuta K, Pearlson MN, Walker DA, Long CJ, Hasa E, Aguirre-Soto A, Celis-Guzman A, Backman DE, Sridhar RL, Cavicchi KA, Viereckl RJ, Tong E, Hansen CJ, Shah DM, Kinane C, Pena-Francesch A, Antonini C, Chaudhary R, Muraca G, Bensouda Y, Zhang Y, Zhao X. Results of an interlaboratory study on the working curve in vat photopolymerization. ADDITIVE MANUFACTURING 2024; 84:10.1016/j.addma.2024.104082. [PMID: 38567361 PMCID: PMC10986335 DOI: 10.1016/j.addma.2024.104082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The working curve informs resin properties and print parameters for stereolithography, digital light processing, and other photopolymer additive manufacturing (PAM) technologies. First demonstrated in 1992, the working curve measurement of cure depth vs radiant exposure of light is now a foundational measurement in the field of PAM. Despite its widespread use in industry and academia, there is no formal method or procedure for performing the working curve measurement, raising questions about the utility of reported working curve parameters. Here, an interlaboratory study (ILS) is described in which 24 individual laboratories performed a working curve measurement on an aliquot from a single batch of PAM resin. The ILS reveals that there is enormous scatter in the working curve data and the key fit parameters derived from it. The measured depth of light penetration Dp varied by as much as 7x between participants, while the critical radiant exposure for gelation Ec varied by as much as 70x. This significant scatter is attributed to a lack of common procedure, variation in light engines, epistemic uncertainties from the Jacobs equation, and the use of measurement tools with insufficient precision. The ILS findings highlight an urgent need for procedural standardization and better hardware characterization in this rapidly growing field.
Collapse
Affiliation(s)
- Thomas J. Kolibaba
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Jason P. Killgore
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Benjamin W. Caplins
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Callie I. Higgins
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
| | - Uwe Arp
- Sensor Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - C. Cameron Miller
- Sensor Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Dianne L. Poster
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Yuqin Zong
- Sensor Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Scott Broce
- 3D Systems, 26600 SW Parkway Ave #300, Wilsonville, OR 97070, USA
| | - Tong Wang
- Allnex USA Inc., 9005 Westside Parkway, Alpharetta, GA 30009, USA
| | | | | | - Amelia Davenport
- Arkema, Inc., 1880 S. Flatirons Ct. Suite J, Boulder, CO 80301, USA
| | | | | | | | | | - Benjamin R. Lund
- Desktop Metal, 1122 Alma Rd. Ste. 100, Richardson, TX 75081, USA
| | - Kai Billerbeck
- DMG Digital Enterprises SE, Elbgaustraße 248, Hamburg 22547, Germany
| | - Anthony M. Clay
- DEVCOM-Army Research Laboratory, FCDD-RLW-M, Manufacturing Science and Technology Branch, 6300 Roadman Road, Aberdeen Proving Ground, MD 21005, USA
| | - Marcus R. Fratarcangeli
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr, Atlanta, GA 30332, USA
| | - H. Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Dr, Atlanta, GA 30332, USA
| | | | - Lindsey B. Bezek
- Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545, USA
| | - Kenji Kikuta
- Osaka Organic Chemical Industry, Ltd., 1-7-2, Nihonbashi Honcho, Chuo, Tokyo 103-0023, Japan
| | | | | | - Corey J. Long
- Sartomer, 502 Thomas Jones Way, Exton, PA 19341, USA
| | - Erion Hasa
- Stratasys, Inc., 1122 Saint Charles St, Elgin, IL 60120, USA
| | - Alan Aguirre-Soto
- School of Engineering and Science, Tecnologico de Monterrey, Colonia Tecnológico, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
| | - Angel Celis-Guzman
- School of Engineering and Science, Tecnologico de Monterrey, Colonia Tecnológico, Avenida Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo León 64849, Mexico
| | - Daniel E. Backman
- Lung Biotechnology, PBC., 1000 Sprint Street, Silver Spring, MD 20910, USA
| | | | - Kevin A. Cavicchi
- School of Polymer Science and Polymer Engineering, University of Akron., 250 S Forge St, Akron, OH 44325, USA
| | - RJ Viereckl
- School of Polymer Science and Polymer Engineering, University of Akron., 250 S Forge St, Akron, OH 44325, USA
| | - Elliott Tong
- School of Polymer Science and Polymer Engineering, University of Akron., 250 S Forge St, Akron, OH 44325, USA
| | - Christopher J. Hansen
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Lowell, 1 University Ave, Lowell, MA 01854, USA
| | - Darshil M. Shah
- Department of Mechanical & Industrial Engineering, University of Massachusetts, Lowell, 1 University Ave, Lowell, MA 01854, USA
| | - Cecelia Kinane
- Department of Materials Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
| | - Abdon Pena-Francesch
- Department of Materials Science and Engineering, University of Michigan, 2800 Plymouth Rd, Ann Arbor, MI 48109, USA
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milan 20125, Italy
| | - Rajat Chaudhary
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milan 20125, Italy
| | - Gabriele Muraca
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, Milan 20125, Italy
| | - Yousra Bensouda
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700O′Hara Street, Pittsburgh, PA 15261, USA
| | - Yue Zhang
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700O′Hara Street, Pittsburgh, PA 15261, USA
| | - Xiayun Zhao
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700O′Hara Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
3
|
Ong JJ, Chow YL, Gaisford S, Cook MT, Swift T, Telford R, Rimmer S, Qin Y, Mai Y, Goyanes A, Basit AW. Supramolecular chemistry enables vat photopolymerization 3D printing of novel water-soluble tablets. Int J Pharm 2023; 643:123286. [PMID: 37532009 DOI: 10.1016/j.ijpharm.2023.123286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Vat photopolymerization has garnered interest from pharmaceutical researchers for the fabrication of personalised medicines, especially for drugs that require high precision dosing or are heat labile. However, the 3D printed structures created thus far have been insoluble, limiting printable dosage forms to sustained-release systems or drug-eluting medical devices which do not require dissolution of the printed matrix. Resins that produce water-soluble structures will enable more versatile drug release profiles and expand potential applications. To achieve this, instead of employing cross-linking chemistry to fabricate matrices, supramolecular chemistry may be used to impart dynamic interaction between polymer chains. In this study, water-soluble drug-loaded printlets (3D printed tablets) are fabricated via digital light processing (DLP) 3DP for the first time. Six formulations with varying ratios of an electrolyte acrylate monomer, [2-(acryloyloxy)ethyl]trimethylammonium chloride (TMAEA), and a co-monomer, 1-vinyl-2-pyrrolidone (NVP), were prepared to produce paracetamol-loaded printlets. 1H NMR spectroscopy analysis confirmed the integration of TMAEA and NVP in the polymer, and residual TMAEA monomers were found to be present only in trace amounts (0.71 - 1.37 %w/w). The apparent molecular mass of the photopolymerised polymer was found to exceed 300,000 Da with hydrodynamic radii of 15 - 20 nm, estimated based on 1H DOSY NMR measurements The loaded paracetamol was completely released from the printlets between 45 minutes to 5 hours. In vivo single-dose acute toxicity studies in rats suggest that the printlets did not cause any tissue damage. The findings reported in this study represent a significant step towards the adoption of vat photopolymerization-based 3DP to produce personalised medicines.
Collapse
Affiliation(s)
- Jun Jie Ong
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Yee Lam Chow
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Michael T Cook
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Thomas Swift
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, UK
| | - Richard Telford
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, UK
| | - Stephen Rimmer
- School of Chemistry and Biosciences, University of Bradford, Richmond Road, BD7 1DP, UK
| | - Yujia Qin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Mai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| |
Collapse
|
4
|
Nechausov S, Ivanchenko A, Morozov O, Miriyev A, Must I, Platnieks O, Jurinovs M, Gaidukovs S, Aabloo A, Kovač M, Bulgakov B. Data on FTIR, photo-DSC and dynamic DSC of triethylene glycol dimethacrylate and N-vinylpyrrolidone copolymerization in the presence of ionic liquids. Data Brief 2022; 43:108395. [PMID: 35811650 PMCID: PMC9260446 DOI: 10.1016/j.dib.2022.108395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Sergey Nechausov
- Department of Chemistry, Lomonosov Moscow State University, 119991, Leniskie gory 1-3, Moscow, Russia
- Corresponding author.
| | - Anna Ivanchenko
- Department of Chemistry, Lomonosov Moscow State University, 119991, Leniskie gory 1-3, Moscow, Russia
| | - Oleg Morozov
- Department of Chemistry, Lomonosov Moscow State University, 119991, Leniskie gory 1-3, Moscow, Russia
| | - Aslan Miriyev
- Materials and Technology Center of Robotics, Empa- Swiss Federal Laboratories for Materials Science and Technology, Ueberlandst. 129, Dübendorf 8600, Switzerland
| | - Indrek Must
- Intelligent Materials and Systems Lab, Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Oskars Platnieks
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, Riga LV-1048, Latvia
| | - Maksims Jurinovs
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, Riga LV-1048, Latvia
| | - Sergejs Gaidukovs
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, Riga LV-1048, Latvia
| | - Alvo Aabloo
- Intelligent Materials and Systems Lab, Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Mirko Kovač
- Materials and Technology Center of Robotics, Empa- Swiss Federal Laboratories for Materials Science and Technology, Ueberlandst. 129, Dübendorf 8600, Switzerland
| | - Boris Bulgakov
- Department of Chemistry, Lomonosov Moscow State University, 119991, Leniskie gory 1-3, Moscow, Russia
| |
Collapse
|
5
|
Naseri E, Ahmadi A. A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
O'Donnell A, Salimi S, Hart L, Babra T, Greenland B, Hayes W. Applications of supramolecular polymer networks. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105209] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Esen C, Antonietti M, Kumru B. On the photopolymerization of mevalonic lactone methacrylate: exposing the potential of an overlooked monomer. Polym Chem 2022. [DOI: 10.1039/d1py01497h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This manuscript will exhibit the photopolymerization of mevalonic lactone methacrylate, an overlooked monomer, and how functional polymers with lactone pendant units can be synthesized.
Collapse
Affiliation(s)
- Cansu Esen
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Markus Antonietti
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14424 Potsdam, Germany
| | - Baris Kumru
- Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14424 Potsdam, Germany
| |
Collapse
|
8
|
Rupp H, Binder WH. 3D Printing of Solvent-Free Supramolecular Polymers. Front Chem 2021; 9:771974. [PMID: 34912780 PMCID: PMC8666451 DOI: 10.3389/fchem.2021.771974] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Additive manufacturing has significantly changed polymer science and technology by engineering complex material shapes and compositions. With the advent of dynamic properties in polymeric materials as a fundamental principle to achieve, e.g., self-healing properties, the use of supramolecular chemistry as a tool for molecular ordering has become important. By adjusting molecular nanoscopic (supramolecular) bonds in polymers, rheological properties, immanent for 3D printing, can be adjusted, resulting in shape persistence and improved printing. We here review recent progress in the 3D printing of supramolecular polymers, with a focus on fused deposition modelling (FDM) to overcome some of its limitations still being present up to date and open perspectives for their application.
Collapse
Affiliation(s)
| | - Wolfgang H. Binder
- Division of Technical and Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Sciences II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
9
|
Wang Y, Ahmed A, Azam A, Bing D, Shan Z, Zhang Z, Tariq MK, Sultana J, Mushtaq RT, Mehboob A, Xiaohu C, Rehman M. Applications of additive manufacturing (AM) in sustainable energy generation and battle against COVID-19 pandemic: The knowledge evolution of 3D printing. JOURNAL OF MANUFACTURING SYSTEMS 2021; 60:709-733. [PMID: 35068653 PMCID: PMC8759146 DOI: 10.1016/j.jmsy.2021.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 05/09/2023]
Abstract
Sustainable and cleaner manufacturing systems have found broad applications in industrial processes, especially aerospace, automotive and power generation. Conventional manufacturing methods are highly unsustainable regarding carbon emissions, energy consumption, material wastage, costly shipment and complex supply management. Besides, during global COVID-19 pandemic, advanced fabrication and management strategies were extremely required to fulfill the shortfall of basic and medical emergency supplies. Three-dimensional printing (3DP) reduces global energy consumption and CO2 emissions related to industrial manufacturing. Various renewable energy harvesting mechanisms utilizing solar, wind, tidal and human potential have been fabricated through additive manufacturing. 3D printing aided the manufacturing companies in combating the deficiencies of medical healthcare devices for patients and professionals globally. In this regard, 3D printed medical face shields, respiratory masks, personal protective equipment, PLA-based recyclable air filtration masks, additively manufactured ideal tissue models and new information technology (IT) based rapid manufacturing are some significant contributions of 3DP. Furthermore, a bibliometric study of 3D printing research was conducted in CiteSpace. The most influential keywords and latest research frontiers were found and the 3DP knowledge was categorized into 10 diverse research themes. The potential challenges incurred by AM industry during the pandemic were categorized in terms of design, safety, manufacturing, certification and legal issues. Significantly, this study highlights the versatile role of 3DP in battle against COVID-19 pandemic and provides up-to-date research frontiers, leading the readers to focus on the current hurdles encountered by AM industry, henceforth conduct further investigations to enhance 3DP technology.
Collapse
Affiliation(s)
- Yanen Wang
- Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Ammar Ahmed
- Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Ali Azam
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Du Bing
- Center of Stomatology, The Second People's Hospital of Foshan, Foshan, 528000, PR China
| | - Zhang Shan
- Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Zutao Zhang
- School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Muhammad Kashif Tariq
- Department of Mechanical Engineering, University of Engineering & Technology, Lahore, 54890, Pakistan
| | - Jakiya Sultana
- Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Ray Tahir Mushtaq
- Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Asad Mehboob
- Department of Material Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Chen Xiaohu
- Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Mudassar Rehman
- Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| |
Collapse
|
10
|
Zheng Y, Zhang W, Baca Lopez DM, Ahmad R. Scientometric Analysis and Systematic Review of Multi-Material Additive Manufacturing of Polymers. Polymers (Basel) 2021; 13:1957. [PMID: 34204727 PMCID: PMC8259534 DOI: 10.3390/polym13121957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 11/17/2022] Open
Abstract
Multi-material additive manufacturing of polymers has experienced a remarkable increase in interest over the last 20 years. This technology can rapidly design and directly fabricate three-dimensional (3D) parts with multiple materials without complicating manufacturing processes. This research aims to obtain a comprehensive and in-depth understanding of the current state of research and reveal challenges and opportunities for future research in the area. To achieve the goal, this study conducts a scientometric analysis and a systematic review of the global research published from 2000 to 2021 on multi-material additive manufacturing of polymers. In the scientometric analysis, a total of 2512 journal papers from the Scopus database were analyzed by evaluating the number of publications, literature coupling, keyword co-occurrence, authorship, and countries/regions activities. By doing so, the main research frame, articles, and topics of this research field were quantitatively determined. Subsequently, an in-depth systematic review is proposed to provide insight into recent advances in multi-material additive manufacturing of polymers in the aspect of technologies and applications, respectively. From the scientometric analysis, a heavy bias was found towards studying materials in this field but also a lack of focus on developing technologies. The future trend is proposed by the systematic review and is discussed in the directions of interfacial bonding strength, printing efficiency, and microscale/nanoscale multi-material 3D printing. This study contributes by providing knowledge for practitioners and researchers to understand the state of the art of multi-material additive manufacturing of polymers and expose its research needs, which can serve both academia and industry.
Collapse
Affiliation(s)
| | | | | | - Rafiq Ahmad
- Laboratory of Intelligent Manufacturing, Design and Automation (LIMDA), Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (Y.Z.); (W.Z.); (D.M.B.L.)
| |
Collapse
|
11
|
Yee DW, Greer JR. Three‐dimensional
chemical reactors:
in situ
materials synthesis to advance vat photopolymerization. POLYM INT 2021. [DOI: 10.1002/pi.6165] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daryl W. Yee
- Division of Engineering and Applied Science California Institute of Technology Pasadena CA USA
| | - Julia R. Greer
- Division of Engineering and Applied Science California Institute of Technology Pasadena CA USA
| |
Collapse
|
12
|
Arrington CB, Rau DA, Williams CB, Long TE. UV-assisted direct ink write printing of fully aromatic Poly(amide imide)s: Elucidating the influence of an acrylic scaffold. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Ley C, IShak A, Metral B, Brendlé J, Allonas X. Tailoring a hybrid three-component photoinitiating system for 3D printing. Phys Chem Chem Phys 2020; 22:20507-20514. [PMID: 32966421 DOI: 10.1039/d0cp03153d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the field of additive manufacturing DLP vat technologies are promising 3D printing techniques. The need of highly efficient photoiniating systems drives us to the development of photocyclic 3-component initiators. In order to improve the 3D printing sensitivity, we present in this paper the use of synthesized clay to tune up the photochemistry underlying the initiating radical production. Therefore, a three-component initiating system, based on a cationic dye, two coinitiators and with a clay filler suitable for DLP 3D printing of acrylate resins leading to high quality of parts and low printing time, is developed.
Collapse
Affiliation(s)
- C Ley
- LPIM, UHA, 3b rue A. Werner, 68200 Mulhouse, France.
| | - A IShak
- LPIM, UHA, 3b rue A. Werner, 68200 Mulhouse, France.
| | - B Metral
- LPIM, UHA, 3b rue A. Werner, 68200 Mulhouse, France.
| | - J Brendlé
- IS2M, CNRS UMR 7361, 15 Rue Jean Starcky, 68057 Mulhouse, France
| | - X Allonas
- LPIM, UHA, 3b rue A. Werner, 68200 Mulhouse, France.
| |
Collapse
|
14
|
Wilts EM, Long TE. Sustainable additive manufacturing: predicting binder jettability of
water‐soluble
, biodegradable and recyclable polymers. POLYM INT 2020. [DOI: 10.1002/pi.6108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Emily M. Wilts
- Department of Chemistry, Macromolecules Innovation Institute Virginia Tech Blacksburg VA USA
| | - Timothy E. Long
- Department of Chemistry, Macromolecules Innovation Institute Virginia Tech Blacksburg VA USA
| |
Collapse
|
15
|
Topa M, Ortyl J. Moving Towards a Finer Way of Light-Cured Resin-Based Restorative Dental Materials: Recent Advances in Photoinitiating Systems Based on Iodonium Salts. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4093. [PMID: 32942676 PMCID: PMC7560344 DOI: 10.3390/ma13184093] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
The photoinduced polymerization of monomers is currently an essential tool in various industries. The photopolymerization process plays an increasingly important role in biomedical applications. It is especially used in the production of dental composites. It also exhibits unique properties, such as a short time of polymerization of composites (up to a few seconds), low energy consumption, and spatial resolution (polymerization only in irradiated areas). This paper describes a short overview of the history and classification of different typical monomers and photoinitiating systems such as bimolecular photoinitiator system containing camphorquinone and aromatic amine, 1-phenyl-1,2-propanedione, phosphine derivatives, germanium derivatives, hexaarylbiimidazole derivatives, silane-based derivatives and thioxanthone derivatives used in the production of dental composites with their limitations and disadvantages. Moreover, this article represents the challenges faced when using the latest inventions in the field of dental materials, with a particular focus on photoinitiating systems based on iodonium salts. The beneficial properties of dental composites cured using initiation systems based on iodonium salts have been demonstrated.
Collapse
Affiliation(s)
- Monika Topa
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Joanna Ortyl
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| |
Collapse
|
16
|
Lee M, Rizzo R, Surman F, Zenobi-Wong M. Guiding Lights: Tissue Bioprinting Using Photoactivated Materials. Chem Rev 2020; 120:10950-11027. [DOI: 10.1021/acs.chemrev.0c00077] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mihyun Lee
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - František Surman
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication HPL J22, ETH Zürich, Otto-Stern-Weg 7, 8093 Zürich, Switzerland
| |
Collapse
|
17
|
Liu Q, Jain T, Peng C, Peng F, Narayanan A, Joy A. Introduction of Hydrogen Bonds Improves the Shape Fidelity of Viscoelastic 3D Printed Scaffolds While Maintaining Their Low-Temperature Printability. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02558] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Wilts EM, Gula A, Davis C, Chartrain N, Williams CB, Long TE. Vat photopolymerization of liquid, biodegradable PLGA-based oligomers as tissue scaffolds. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Scott PJ, Meenakshisundaram V, Hegde M, Kasprzak CR, Winkler CR, Feller KD, Williams CB, Long TE. 3D Printing Latex: A Route to Complex Geometries of High Molecular Weight Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10918-10928. [PMID: 32028758 DOI: 10.1021/acsami.9b19986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Vat photopolymerization (VP) additive manufacturing fabricates intricate geometries with excellent resolution; however, high molecular weight polymers are not amenable to VP due to concomitant high solution and melt viscosities. Thus, a challenging paradox arises between printability and mechanical performance. This report describes concurrent photopolymer and VP system design to navigate this paradox with the unprecedented use of polymeric colloids (latexes) that effectively decouple the dependency of viscosity on molecular weight. Photocrosslinking of a continuous-phase scaffold, which surrounds the latex particles, combined with in situ computer-vision print parameter optimization, which compensates for light scattering, enables high-resolution VP of high molecular weight polymer latexes as particle-embedded green bodies. Thermal post-processing promotes coalescence of the dispersed particles throughout the scaffold, forming a semi-interpenetrating polymer network without loss in part resolution. Printing a styrene-butadiene rubber latex, a previously inaccessible elastomer composition for VP, exemplified this approach and yielded printed elastomers with precise geometry and tensile extensibilities exceeding 500%.
Collapse
Affiliation(s)
- Philip J Scott
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Viswanath Meenakshisundaram
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Maruti Hegde
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Christopher R Kasprzak
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher R Winkler
- Nanoscale Characterization and Fabrication Laboratory (NCFL), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Keyton D Feller
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Christopher B Williams
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Timothy E Long
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
20
|
Weems AC, Pérez-Madrigal MM, Arno MC, Dove AP. 3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility. Biomacromolecules 2020; 21:1037-1059. [PMID: 32058702 DOI: 10.1021/acs.biomac.9b01539] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The advent of additive manufacturing offered the potential to revolutionize clinical medicine, particularly with patient-specific implants across a range of tissue types. However, to date, there are very few examples of polymers being used for additive processes in clinical settings. The state of the art with regards to 3D printable polymeric materials being exploited to produce novel clinically relevant implants is discussed here. We focus on the recent advances in the development of implantable, polymeric medical devices and tissue scaffolds without diverging extensively into bioprinting. By introducing the major 3D printing techniques along with current advancements in biomaterials, we hope to provide insight into how these fields may continue to advance while simultaneously reviewing the ongoing work in the field.
Collapse
Affiliation(s)
- Andrew C Weems
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - Maria C Arno
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
21
|
Scott PJ, Kasprzak CR, Feller KD, Meenakshisundaram V, Williams CB, Long TE. Light and latex: advances in the photochemistry of polymer colloids. Polym Chem 2020. [DOI: 10.1039/d0py00349b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Unparalleled temporal and spatial control of colloidal chemical processes introduces immense potential for the manufacturing, modification, and manipulation of latex particles.
Collapse
Affiliation(s)
- Philip J. Scott
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | | | - Keyton D. Feller
- Department of Mechanical Engineering
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | | | - Christopher B. Williams
- Department of Mechanical Engineering
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | - Timothy E. Long
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| |
Collapse
|
22
|
Erokhin KS, Gordeev EG, Ananikov VP. Revealing interactions of layered polymeric materials at solid-liquid interface for building solvent compatibility charts for 3D printing applications. Sci Rep 2019; 9:20177. [PMID: 31882642 PMCID: PMC6934857 DOI: 10.1038/s41598-019-56350-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/11/2019] [Indexed: 11/09/2022] Open
Abstract
Poor stability of 3D printed plastic objects in a number of solvents limits several important applications in engineering, chemistry and biology. Due to layered type of assembling, 3D-printed surfaces possess rather different properties as compared to bulk surfaces made by other methods. Here we study fundamental interactions at the solid-liquid interface and evaluate polymeric materials towards advanced additive manufacturing. A simple and universal stability test was developed for 3D printed parts and applied to a variety of thermoplastics. Specific modes of resistance/destruction were described for different plastics and their compatibility to a representative scope of solvents (aqueous and organic) was evaluated. Classification and characterization of destruction modes for a wide range of conditions (including geometry and 3D printing parameters) were carried out. Key factors of tolerance to solvent media were investigated by electron microscopy. We show that the overall stability and the mode of destruction depend on chemical properties of the polymer and the nature of interactions at the solid-liquid interface. Importantly, stability also depends on the layered microstructure of the sample, which is defined by 3D printing parameters. Developed solvent compatibility charts for a wide range of polymeric materials (ABS, PLA, PLA-Cu, PETG, SBS, Ceramo, HIPS, Primalloy, Photoresin, Nylon, Nylon-C, POM, PE, PP) and solvents represent an important benchmark for practical applications.
Collapse
Affiliation(s)
- Kirill S Erokhin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Evgeniy G Gordeev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| |
Collapse
|
23
|
Smith PT, Narupai B, Tsui JH, Millik SC, Shafranek RT, Kim DH, Nelson A. Additive Manufacturing of Bovine Serum Albumin-Based Hydrogels and Bioplastics. Biomacromolecules 2019; 21:484-492. [DOI: 10.1021/acs.biomac.9b01236] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Patrick T. Smith
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Benjaporn Narupai
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan H. Tsui
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - S. Cem Millik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryan T. Shafranek
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
24
|
Metral B, Bischoff A, Ley C, Ibrahim A, Allonas X. Photochemical Study of a Three‐Component Photocyclic Initiating System for Free Radical Photopolymerization: Implementing a Model for Digital Light Processing 3D Printing. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900167] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Boris Metral
- Laboratoire de Photochimie et d'Ingéniérie MacromoléculairesUniversité de Haute-Alsace 3b rue A. Werner 68093 Mulhouse France
| | - Adrien Bischoff
- Laboratoire de Photochimie et d'Ingéniérie MacromoléculairesUniversité de Haute-Alsace 3b rue A. Werner 68093 Mulhouse France
| | - Christian Ley
- Laboratoire de Photochimie et d'Ingéniérie MacromoléculairesUniversité de Haute-Alsace 3b rue A. Werner 68093 Mulhouse France
| | - Ahmad Ibrahim
- Laboratoire de Photochimie et d'Ingéniérie MacromoléculairesUniversité de Haute-Alsace 3b rue A. Werner 68093 Mulhouse France
| | - Xavier Allonas
- Laboratoire de Photochimie et d'Ingéniérie MacromoléculairesUniversité de Haute-Alsace 3b rue A. Werner 68093 Mulhouse France
| |
Collapse
|
25
|
Liu Y, Lin Y, Jiao T, Lu G, Liu J. Photocurable modification of inorganic fillers and their application in photopolymers for 3D printing. Polym Chem 2019. [DOI: 10.1039/c9py01445d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The reinforcement of photo-crosslinkable calcium sulfate whiskers and their reaction mechanism in photopolymers for 3D printing technology.
Collapse
Affiliation(s)
- Yang Liu
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- People's Republic of China
| | - Yucong Lin
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- People's Republic of China
| | - Ting Jiao
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- People's Republic of China
| | - Gang Lu
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- People's Republic of China
| | - Jie Liu
- College of Materials Science and Engineering
- Nanjing Tech University
- Nanjing
- People's Republic of China
| |
Collapse
|