1
|
Jun BM, Kim D, Shin J, Chon K, Park C, Rho H. Removal of trivalent chromium ions in model contaminated groundwater using hexagonal boron nitride as an adsorbent. CHEMOSPHERE 2024; 361:142539. [PMID: 38844110 DOI: 10.1016/j.chemosphere.2024.142539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The feasibility of using hexagonal boron nitride (h-BN) to treat heavy metal Cr(III) from model contaminated groundwater was evaluated in this study by adsorption experiments and characterizations. To the best of our knowledge, this study is the first attempt to conduct the adsorption of Cr(III) by h-BN under various experimental conditions such as exposure time, ratio of adsorbates and adsorbents, solution pH, background ions with different ionic strength, and the presence of humic acids (HA) in model contaminated groundwater. The optimized h-BN showed excellent maximum adsorption capacity (i.e., 177 mg ∙ g-1) when the concentrations of Cr(III) and h-BN were 10 and 10 mg ∙ L-1, respectively. Subsequently, we confirmed there was a negligible change in the adsorption performance of Cr(III) by h-BN in the presence of co-ions (i.e., K and Mg) in concentrations in a range from 50 to 1000 mg ∙ L-1. Furthermore, the adsorption performance of Cr(III) gradually improved with HA concentrations from 2.5 to 25 mg ∙ L-1. Interestingly, the maximum adsorption performance of Cr(III) by both HA and h-BN increased until 500 mg ∙ g-1 in the presence of 25 mg ∙ L-1 HA. The adsorption mechanism was clarified by Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Additionally, we successfully confirmed that h-BN could be reused until five cycles. On the basis of the adsorption performance results and characterizations, h-BN can be utilized as an efficient and practical adsorbent to treat Cr(III) in groundwater treatment.
Collapse
Affiliation(s)
- Byung-Moon Jun
- Radwaste Management Center, Korea Atomic Energy Research Institute (KAERI), 111 Daedeok-Daero 989beon-gil, Yuseong-Gu, Daejeon, 34057, Republic of Korea
| | - Deokhwan Kim
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283 Goyang-Daero, Ilsanseo-Gu, Goyang-si, Gyeonggi-do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea
| | - Jaegwan Shin
- Department of Integrated Energy and Infra system, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Kangmin Chon
- Department of Integrated Energy and Infra system, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Department of Environmental Engineering, College of Engineering, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hojung Rho
- Department of Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT), 283 Goyang-Daero, Ilsanseo-Gu, Goyang-si, Gyeonggi-do, 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
2
|
Ahmed MT, Roy D, Roman AA, Islam S, Ahmed F. A first-principles investigation of Cr adsorption on C 8 and B 4N 4 nanocages in aqueous mediums. Phys Chem Chem Phys 2023; 25:32261-32272. [PMID: 37988166 DOI: 10.1039/d3cp04225a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Heavy metal removal from polluted environments is one of the vital research areas for better and healthier living. In this research, C8 and B4N4 nanocage-like quantum dots are investigated for heavy metal (Cr) removal applications via density functional theory calculations. The adsorption of up to two Cr atoms has been studied in both air and a water medium. The adsorption of Cr atoms results in significant structural deformation of the adsorbents with a high adsorption energy of -8.74 and -5.77 eV for C8 and B4N4 nanostructures, respectively, which is further increased with an increasing number of Cr atoms. All adsorbents and complex structures showed real vibrational frequencies. Mulliken charge and electrostatic potential analysis reveal a significant charge transfer between adsorbate-adsorbent. The adsorption process causes a decrease in the energy gap of the adsorbents. All the reactions in this study were spontaneous and thermodynamically ordered. QTAIM analysis verifies that the interactions of the adsorbents with Cr atoms are strong partial covalent. The study's findings make C8 and B4N4 nanostructures potential candidates for Cr-detection and removal applications.
Collapse
Affiliation(s)
- Mohammad Tanvir Ahmed
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh.
| | - Debashis Roy
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh.
| | - Abdullah Al Roman
- Department of Physics, Jashore University of Science and Technology, Jashore, Bangladesh.
| | - Shariful Islam
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| | - Farid Ahmed
- Department of Physics, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
3
|
Lu M, Su Z, Zhang Y, Zhang H, Wang J, Li Q, Jiang T. Mn-Doped Spinel for Removing Cr(VI) from Aqueous Solutions: Adsorption Characteristics and Mechanisms. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1553. [PMID: 36837183 PMCID: PMC9961004 DOI: 10.3390/ma16041553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In this study, the manganese (Mn) was doped in the MnFe2O4 crystal by the solid-phase synthesis method. Under the optimum conditions (pH = 3), the max removal rate and adsorption quantity of Cr(VI) on MnFe2O4 adsorbent obtain under pH = 3 were 92.54% and 5.813 mg/g, respectively. The DFT calculation results indicated that the adsorption energy (Eads) between HCrO4- and MnFe2O4 is -215.2 KJ/mol. The Cr(VI) is mainly adsorbed on the Mn atoms via chemical bonds in the form of HCrO4-. The adsorption of Mn on the MnFe2O4 surface belonged to chemisorption and conformed to the Pseudo-second-order equation. The mechanism investigation indicated that the Mn in MnFe2O4 has an excellent enhancement effect on the Cr(VI) removal process. The roles of Mn in the Cr(VI) removal process included two parts, providing adsorbing sites and being reductant. Firstly, the Cr(VI) is adsorbed onto the MnFe2O4 via chemisorption. The Mn in MnFe2O4 can form ionic bonds with the O atoms of HCrO4-/CrO42-, thus providing the firm adsorbing sites for the Cr(VI). Subsequently, the dissolved Mn(II) can reduce Cr(VI) to Cr(III). The disproportionation of oxidized Mn(III) produced Mn(II), causing Mn(II) to continue to participate in the Cr(VI) reduction. Finally, the reduced Cr(III) is deposited on the MnFe2O4 surface in the form of Cr(OH)3 colloids, which can be separated by magnetic separation.
Collapse
Affiliation(s)
- Manman Lu
- School of Resources and Safety Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zijian Su
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Yuanbo Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Hanquan Zhang
- School of Resources and Safety Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jia Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qian Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Tao Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
4
|
Song Z, Guo K, Bai W, Tang C. Adsorption and removal of Cr(VI) from aqueous solution with amine-functionalized porous boron nitride. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
5
|
Chen W, Xu X, Cui J, Zhou Z, Yao Y. Porous boron nitride intercalated zero-valent iron particles for highly efficient elimination of organic contaminants and Cr (VI). CHEMOSPHERE 2022; 306:135501. [PMID: 35779678 DOI: 10.1016/j.chemosphere.2022.135501] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Developing novel bifunctional materials to high efficiently degrade organic pollutants and eliminate hexavalent chromium (Cr (VI)) is significantly desired in the wastewater treatment field. The porous boron nitride (p-BN) was fabricated by a two-stage calcination strategy and was innovatively employed to support zero-valent iron (ZVI), achieving the bifunctional material (p-BN@ZVI) to degrade carbamazepine (CBZ) and eliminate Cr (VI). p-BN@ZVI could degrade more than 98% CBZ in 6 min with the high apparent first-order constant (kobs) of 0.536 min-1, almost 5 times higher than that of the ZVI/PMS system and outperformed most previous reported ZVI supported catalysts, which was mainly ascribed to the fact that the introduction of p-BN with high surface area (793.97 m2/g) improved the dispersion of ZVI and exposed more active sites. Quenching tests coupled with electron paramagnetic resonance (EPR) suggested that •OH was the major reactive oxygen species with a contribution of 71.6%. Notably, the p-BN@ZVI/PMS system expressed low activation energy of 8.23 kJ/mol and reached a 65.69% TOC degradation in 20 min even at 0 °C. p-BN@ZVI possessed remarkable storage stability and could still degrade 92.3% CBZ despite three-month storage. More interestingly, p-BN@ZVI was capable to eliminate 98.1% of 50 mg/L Cr (VI) within 5 min through adsorption and reduction, where nearly 80% Cr (VI) was transformed to Cr (III), and exhibited the maximum Cr (VI) elimination capacity of 349 mg/g. This study provides new insights into the efficient organic contaminants degradation and Cr (VI) elimination in the treatment of wastewater.
Collapse
Affiliation(s)
- Wenxian Chen
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Xiangwei Xu
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jinping Cui
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Zhenyang Zhou
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Yuyuan Yao
- National Engineering Lab of Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, 312000, PR China.
| |
Collapse
|
6
|
Li J, Shen T, Wang H, Li S, Wang J, Williams GR, Zhao Y, Kong X, Zheng L, Song YF. Insights into the Superstable Mineralization of Chromium(III) from Wastewater by CuO. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37823-37832. [PMID: 35960145 DOI: 10.1021/acsami.2c10298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The removal of CrIII ions from contaminated wastewater is of great urgency from both environmental protection and resource utilization perspectives. Herein, we developed a superstable mineralization method to immobilize Cr3+ ions from wastewater using CuO as a stabilizer, leading to the formation of a CuCr layered double hydroxide (denoted as CuCr-LDH). CuO showed a superior Cr3+ removal performance with a removal efficiency of 97.97% and a maximum adsorption capacity of 207.6 mg/g in a 13000 mg/L Cr3+ ion solution. In situ and ex situ X-ray absorption fine structure characterizations were carried out to elucidate the superstable mineralization mechanism. Two reaction pathways were proposed including coprecipitation-dissolution and topological transformation. The mineralized product of CuCr-LDH can be reused for the efficient removal of organic dyes, and the adsorption capacities were up to 248.0 mg/g for Congo red and 240.1 mg/g for Evans blue, respectively. Moreover, CuCr-LDH exhibited a good performance for photocatalytic CO2 reduction to syngas (H2/CO = 2.66) with evolution rates of 54.03 μmol/g·h for CO and of 143.94 μmol/g·h for H2 under λ > 400 nm, respectively. More encouragingly, the actual tanning leather Cr3+ wastewater treated by CuO showed that Cr3+ can reduce from 3438 to 0.06 mg/L, which was much below discharge standards (1.5 mg/L). This work provides a new approach to the mineralization of Cr3+ ions through the "salt-oxide" route, and the findings reported herein may guide the future design of highly efficient mineralization agents for heavy metals.
Collapse
Affiliation(s)
- Jiaxin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Huijuan Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shaoquan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jikang Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
7
|
Dash B, Jena SK, Rath SS. Adsorption of Cr (III) and Cr (VI) ions on muscovite mica: Experimental and molecular modeling studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Ma L, Chen N, Feng C. Practical application potential of microbial-phosphorus minerals-alginate immobilized particles on chromium(VI)-bioreduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140685. [PMID: 32721757 DOI: 10.1016/j.scitotenv.2020.140685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Due to the widespread use of chromium (Cr) across various industrial processes, the process of in-situ remediation of Cr-contaminated groundwater has received extensive attention. Previous studies of solid-phase phosphorus sources and microbial immobilization co-strengthening materials have demonstrated that their performance in continuous flow reactions is of great significance towards practical application of these technologies. It was suggested that Microbial-Phosphorus minerals-Alginate (MPA) immobilized particles showed superior performance (high Cr removal efficiency, low phosphorus surplus, and high environmental resistance) in comparisons of non-immobilization systems and different immobilization methods under continuous flow conditions. Microbial community analysis revealed significant differences between different systems as well as between variations in environmental factors, providing further support for the above conclusions. Synthetic wastewater (synthesized by actual groundwater) was also introduced to further verify the practical application potential of MPA immobilized particles. The results of this study provide a new insight and relevant bench scale data to support the enhancement of in-situ Cr(VI) bioremediation.
Collapse
Affiliation(s)
- Linlin Ma
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
9
|
Ma L, Chen N, Feng C. Chromium(VI) bioreduction behavior and microbial revolution by phosphorus minerals in continuous flow experiment. BIORESOURCE TECHNOLOGY 2020; 315:123847. [PMID: 32702581 DOI: 10.1016/j.biortech.2020.123847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/11/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Chromium (Cr) contamination in groundwater is a serious threat to both the environment and public health, due to its high toxicity and extensive industrial application. Based on previous studies on the enhancement of Cr(VI) bioreduction by phosphorus minerals, it is of great significance to assess its practical application potential. Towards this aim, Cr(VI) bioreduction guided by phosphorus minerals under continuous flow condition was conducted with the variation of initial concentration and HRT, where it was conservatively estimated that 5 g of phosphorus minerals can satisfy the needs of normal operation of a maximum of 200 cm3 bioreactor at a chromium load of 40 mg/(L·d), and further analysis was performed for operating characteristics and microbial community along the route and the reactor. The results of this study provide new insights and empirical support for the in-situ bioremediation reinforcement of Cr(VI)-contaminated groundwater.
Collapse
Affiliation(s)
- Linlin Ma
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
10
|
Some Properties of Electron Beam-Irradiated Sheep Wool Linked to Cr(III) Sorption. Molecules 2019; 24:molecules24234401. [PMID: 31810285 PMCID: PMC6930447 DOI: 10.3390/molecules24234401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022] Open
Abstract
We examined the characteristics of an electron beam irradiated wool with an absorbed dose of (21–410) kGy in comparison with natural wool with respect to the determination of the isoelectric point (IEP), zero charge point (ZCP), mechanism of Cr(III) sorption from higher concentrated solutions, and the modelling of the wool-Cr(III) interaction. The data of ZPC and IEP differed between natural and irradiated samples. Increasing the dose shifted the pH of ZPC from 6.85 for natural wool to 6.20 for the highest dosed wool, while the natural wool IEP moved very little, from pH = 3.35 to 3.40 for all of the irradiated samples. The sorption experiments were performed in a pH bath set at 3.40, and the determination of the residual Cr(III) in the bath was performed by VIS spectrometry under optimized conditions. The resulting sorptivity showed a monotonically rising trend with increasing Cr(III) concentration in the bath. Lower doses, unlike higher doses, showed better sorptivity than the natural wool. FTIR data indicated the formation of complex chromite salts of carboxylates and cysteinates. Crosslinks via ligands coming from different keratin chains were predicted, preferably on the surface of the fibers, but to a degree that did not yet inhibit the diffusion of Cr(III)-cations into the fiber volume. We also present a concept of a complex octahedral structure.
Collapse
|
11
|
Islam MA, Angove MJ, Morton DW. Recent innovative research on chromium (VI) adsorption mechanism. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.enmm.2019.100267] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Li Q, Zhang T, Yu X, Wu X, Zhang X, Lu Z, Yang X, Huang Y, Li L. Isolated Au Atom Anchored on Porous Boron Nitride as a Promising Electrocatalyst for Oxygen Reduction Reaction (ORR): A DFT Study. Front Chem 2019; 7:674. [PMID: 31681728 PMCID: PMC6811612 DOI: 10.3389/fchem.2019.00674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/25/2019] [Indexed: 11/13/2022] Open
Abstract
The development of efficient, stable, and low-cost catalytic material for the oxygen reduction reaction (ORR) is currently highly desirable but challenging. In this work, based on first-principles calculation, the stabilities, catalytic activities and catalytic mechanisms of isolated Au atom supported on defective porous BN (p-BN) have been studied in detail. The results reveal that the defective p-BN anchor Au atom strongly to ensure the stability of Au/p-BN. Based on frontier molecular orbital and charge-density analysis, isolated Au atom supported on porous BN with VN defect (Au/p-BN-VN) is an effective ORR catalyst. Especially, the low barriers of the formation (0.38 eV) and dissociation (0.31 eV) of *OOH and the instability of H2O2 on Au/p-BN-VN catalyst suggest that ORR proceeds via 4-electron pathway. Along the favorable pathway, the reduction of O2 to *OOH is the rate-limiting step with the largest activation barrier of 0.38 eV and the maximum free energy change is 1.88 eV. Our results provide a useful guidance for the design and fabrication of new Au-base catalyst with high-efficiency and are beneficial for the developing of novel isolated metal atom catalysts for ORR.
Collapse
Affiliation(s)
- Qiaoling Li
- Key Lab for Micro- and Nano-Scale Boron Nitride Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Tianran Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Xiaofei Yu
- Key Lab for Micro- and Nano-Scale Boron Nitride Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Xiaoyu Wu
- Key Lab for Micro- and Nano-Scale Boron Nitride Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Xinghua Zhang
- Key Lab for Micro- and Nano-Scale Boron Nitride Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Zunming Lu
- Key Lab for Micro- and Nano-Scale Boron Nitride Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Xiaojing Yang
- Key Lab for Micro- and Nano-Scale Boron Nitride Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Yang Huang
- Key Lab for Micro- and Nano-Scale Boron Nitride Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Lanlan Li
- Key Lab for Micro- and Nano-Scale Boron Nitride Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
13
|
A study on removal of Cr(III) from aqueous solution using biomass of Cymbopogon flexuosus immobilized in sodium alginate beads and its use as hydrogenation catalyst. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|