1
|
Zhang P, Liu H, Xu S, He Y, He X, Sun B, Hu J. Direct Construction of 1,4-Dihydropyridazines and Pyrazoles via Annulation of Alkyl 2-Aroyl-1-chlorocyclopropanecarboxylates. J Org Chem 2024; 89:9853-9860. [PMID: 38822472 DOI: 10.1021/acs.joc.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
An efficient and chemodivergent synthesis of highly functionalized 1,4-dihydropyridazines and pyrazoles has been accomplished via base-promoted annulation between hydrazones and alkyl 2-aroyl-1-chlorocyclopropanecarboxylates, respectively. This transition-metal-free domino reaction proceeded rapidly under mild basic conditions, affording potentially bioactive 1,4-dihydropyridazine and pyrazole derivatives in moderate yields. The conversion of 1,4-dihydropyridazine to pyrazole was confirmed by adjusting the quantity of the base.
Collapse
Affiliation(s)
- Pengwei Zhang
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, Hengyang Normal University, Hengyang 421008, P. R. China
| | - Huili Liu
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, Hengyang Normal University, Hengyang 421008, P. R. China
| | - Shuo Xu
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, Hengyang Normal University, Hengyang 421008, P. R. China
| | - Yiqun He
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, Hengyang Normal University, Hengyang 421008, P. R. China
| | - Xinhao He
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, Hengyang Normal University, Hengyang 421008, P. R. China
| | - Bing Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Junhao Hu
- Key Laboratory of Functional Metal-Organic Compounds of Hunan Province, Key Laboratory of Functional Organometallic Materials, University of Hunan Province, Hengyang Normal University, Hengyang 421008, P. R. China
| |
Collapse
|
2
|
Crescentini LD, Favi G, Mari G, Ciancaleoni G, Costamagna M, Santeusanio S, Mantellini F. Experimental and Theoretical DFT Investigations in the [2,3]-Wittig-Type Rearrangement of Propargyl/Allyl-Oxy-Pyrazolones. Molecules 2021; 26:6557. [PMID: 34770965 PMCID: PMC8587800 DOI: 10.3390/molecules26216557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Here we report the synthesis of interesting 3-alkyl-4-hydroxy-1-aryl-4-(propa-1,2-dienyl)1H-pyrazol-5(4H)-ones and 9-alkyl-7-aryl-1-oxa-7,8-diazaspiro[4.4]nona-3,8-dien-6-ones, starting from 1,2-diaza-1,3-dienes (DDs) and propargyl alcohol. The reaction proceeds through a sequence Michael-type nucleophilic attack/cyclization/[2,3]-Wittig rearrangement. In the same way, the reaction between the aforementioned DDs and allyl alcohol furnished 4-allyl-4-hydroxy-3-alkyl-1-aryl-1H-pyrazol-5(4H)-ones. A DFT study was also carried out, in order to have decisive clarifications about the mechanism.
Collapse
Affiliation(s)
- Lucia De Crescentini
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Gianfranco Favi
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Giacomo Mari
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Gianluca Ciancaleoni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, PI, Italy; (G.C.); (M.C.)
| | - Marcello Costamagna
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, PI, Italy; (G.C.); (M.C.)
| | - Stefania Santeusanio
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| | - Fabio Mantellini
- Department of Biomolecular Sciences, Section of Organic Chemistry and Organic Natural Compounds, University of Urbino “Carlo Bo”, Via I Maggetti 24, 61029 Urbino, PU, Italy; (G.F.); (G.M.); (S.S.)
| |
Collapse
|
3
|
Yang T, Deng Z, Wang KH, Li P, Huang D, Su Y, Hu Y. Synthesis of CF 3-Substituted 1,6-Dihydropyridazines by Copper-Promoted Cascade Oxidation/Cyclization of Trifluoromethylated Homoallylic N-Acylhydrazines. J Org Chem 2020; 85:12304-12314. [DOI: 10.1021/acs.joc.0c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Tianyu Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Zhoubin Deng
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Pengfei Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Yingpeng Su
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
4
|
Feng J, He T, Xie Y, Yu Y, Baell JB, Huang F. I 2-Promoted [4 + 2] cycloaddition of in situ generated azoalkenes with enaminones: facile and efficient synthesis of 1,4-dihydropyridazines and pyridazines. Org Biomol Chem 2020; 18:9483-9493. [PMID: 33179698 DOI: 10.1039/d0ob01958e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A facile and efficient strategy for the synthesis of 1,4-dihydropyridazines and pyridazines through I2-promoted [4 + 2] cycloaddition of in situ generated azoalkenes with enaminones has been developed. The switch in selectivity is attributed to the judicious choice of different reaction temperatures. The key features of this work include controllable and selective synthesis, good functional group tolerance, good to excellent reaction yields, metal/base-free conditions, and also applicability to one-pot methodology.
Collapse
Affiliation(s)
- Jiajun Feng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Tiantong He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yuxing Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China. and Medicinal Chemistry Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China. and School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
5
|
Sawant R, Stevens MY, Odell LR. Microwave-Assisted aza-Friedel-Crafts Arylation of N-Acyliminium Ions: Expedient Access to 4-Aryl 3,4-Dihydroquinazolinones. ACS OMEGA 2018; 3:14258-14265. [PMID: 31458116 PMCID: PMC6644441 DOI: 10.1021/acsomega.8b02298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/12/2018] [Indexed: 06/10/2023]
Abstract
A one-pot microwave-assisted aza-Friedel-Crafts arylation of N-acyliminium ions, generated in situ from o-formyl carbamates and different amines, is reported. This metal-free protocol provides rapid access to diverse 4-aryl 3,4-dihydroquinazolinones in excellent yield without any aqueous workup. A solvent-directed process for the selective aza-Friedel-Crafts arylation of electron-rich aryl/heteroaryl/butenyl-tethered N-acyliminium ions is also described.
Collapse
|
6
|
Guo YQ, Zhao MN, Ren ZH, Guan ZH. Copper-Promoted 6- endo-trig Cyclization of β,γ-Unsaturated Hydrazones for the Synthesis of 1,6-Dihydropyridazines. Org Lett 2018; 20:3337-3340. [PMID: 29790767 DOI: 10.1021/acs.orglett.8b01240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel and efficient strategy for the synthesis of 1,6-dihydropyridazines via copper-promoted 6- endo-trig cyclization of readily available β,γ-unsaturated hydrazones have been developed. A series of 1,6-dihydropyridazines have been synthesized by this method with good yields, high functional group tolerance, and remarkable regioselectivity under mild conditions. Importantly, the 1,6-dihydropyridazines can be efficiently converted to biologically important pyridazines in the presence of NaOH.
Collapse
Affiliation(s)
- Yong-Qiang Guo
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P. R. China
| | - Mi-Na Zhao
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P. R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P. R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science , Northwest University , Xi'an 710127 , P. R. China
| |
Collapse
|