1
|
Prajapati V, Singh AK, Kumar A, Singh H, Pathak P, Grishina M, Kumar V, Khalilullah H, Verma A, Kumar P. Structural insights, regulation, and recent advances of RAS inhibitors in the MAPK signaling cascade: a medicinal chemistry perspective. RSC Med Chem 2025:d4md00923a. [PMID: 40052089 PMCID: PMC11880839 DOI: 10.1039/d4md00923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/25/2025] [Indexed: 03/09/2025] Open
Abstract
The MAPK pathway has four main components: RAS, RAF, MEK, and ERK. Among these, RAS is the most frequently mutated protein and the leading cause of cancer. The three isoforms of the RAS gene are HRAS, NRAS, and KRAS. The KRAS gene is characterized by two splice variants, K-Ras4A and K-Ras4B. The occurrence of cancer often involves a mutation in both KRAS4A and KRAS4B. In this study, we have elucidated the mechanism of the RAS protein complex and the movement of switches I and II. Only two RAS inhibitors, sotorasib and adagrasib, have been approved by the FDA, and several are in clinical trials. This review comprises recent developments in synthetic RAS inhibitors, their unique properties, their importance in inhibiting RAS mutations, and the current challenges in developing new RAS inhibitors. This review will undoubtedly help researchers design novel RAS inhibitors.
Collapse
Affiliation(s)
- Vineet Prajapati
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to be University) Hyderabad Campus India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- University Centre for Research and Development, Chandigarh University Gharuan 140413 Punjab India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University Unayzah 51911 Saudi Arabia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
- Department of Allied Sciences (Chemistry), Graphic Era (Deemed to be University) Dehradun 248002 India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
2
|
Zhao Q, Han B, Peng C, Zhang N, Huang W, He G, Li JL. A promising future of metal-N-heterocyclic carbene complexes in medicinal chemistry: The emerging bioorganometallic antitumor agents. Med Res Rev 2024; 44:2194-2235. [PMID: 38591229 DOI: 10.1002/med.22039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
Metal complexes based on N-heterocyclic carbene (NHC) ligands have emerged as promising broad-spectrum antitumor agents in bioorganometallic medicinal chemistry. In recent decades, studies on cytotoxic metal-NHC complexes have yielded numerous compounds exhibiting superior cytotoxicity compared to cisplatin. Although the molecular mechanisms of these anticancer complexes are not fully understood, some potential targets and modes of action have been identified. However, a comprehensive review of their biological mechanisms is currently absent. In general, apoptosis caused by metal-NHCs is common in tumor cells. They can cause a series of changes after entering cells, such as mitochondrial membrane potential (MMP) variation, reactive oxygen species (ROS) generation, cytochrome c (cyt c) release, endoplasmic reticulum (ER) stress, lysosome damage, and caspase activation, ultimately leading to apoptosis. Therefore, a detailed understanding of the influence of metal-NHCs on cancer cell apoptosis is crucial. In this review, we provide a comprehensive summary of recent advances in metal-NHC complexes that trigger apoptotic cell death via different apoptosis-related targets or signaling pathways, including B-cell lymphoma 2 (Bcl-2 family), p53, cyt c, ER stress, lysosome damage, thioredoxin reductase (TrxR) inhibition, and so forth. We also discuss the challenges, limitations, and future directions of metal-NHC complexes to elucidate their emerging application in medicinal chemistry.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gu He
- Department of Dermatology & Venerolog, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Anti-Infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
3
|
Xu H, Weng MY, Xu P, Huang ZM, Li QH, Zhang Z. NIS-Promoted Chemodivergent and Diastereoselective Synthesis of Pyrrolinyl and Cyclopentenyl Spiropyrazolones via Regulated Cyclization of Alkylidene Pyrazolones with Enamino Esters. J Org Chem 2024; 89:9051-9055. [PMID: 38814735 DOI: 10.1021/acs.joc.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
An N-iodosuccinimide-promoted annulation of alkylidene pyrazolones with enamino esters has been explored to construct a spiropyrazolone moiety through a Michael addition/iodination/intramolecular nucleophilic substitution sequence. When the reaction was performed in acetonitrile at 100 °C, it furnished pyrrolinyl spiropyrazolones exclusively in an anti configuration through N-attacking cyclization. When the reaction was performed in dimethyl sulfoxide at 80 °C in the presence of K2HPO4, it afforded cyclopentenyl spiropyrazolones exclusively in the syn configuration through C-attacking cyclization. A plausible mechanism has also been proposed.
Collapse
Affiliation(s)
- Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ming-Yue Weng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Peng Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ze-Ming Huang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Qing-Hai Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ze Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
4
|
Rauf U, Shabir G, Bukhari S, Albericio F, Saeed A. Contemporary Developments in Ferrocene Chemistry: Physical, Chemical, Biological and Industrial Aspects. Molecules 2023; 28:5765. [PMID: 37570735 PMCID: PMC10420780 DOI: 10.3390/molecules28155765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Ferrocenyl-based compounds have many applications in diverse scientific disciplines, including in polymer chemistry as redox dynamic polymers and dendrimers, in materials science as bioreceptors, and in pharmacology, biochemistry, electrochemistry, and nonlinear optics. Considering the horizon of ferrocene chemistry, we attempted to condense the neoteric advancements in the synthesis and applications of ferrocene derivatives reported in the literature from 2016 to date. This paper presents data on the progression of the synthesis of diverse classes of organic compounds having ferrocene scaffolds and recent developments in applications of ferrocene-based organometallic compounds, with a special focus on their biological, medicinal, bio-sensing, chemosensing, asymmetric catalysis, material, and industrial applications.
Collapse
Affiliation(s)
- Umair Rauf
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Ghulam Shabir
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Saba Bukhari
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan; (U.R.); (G.S.); (S.B.)
| |
Collapse
|
5
|
Jiang J, Zhou J, Li Y, Peng C, He G, Huang W, Zhan G, Han B. Silver/chiral pyrrolidinopyridine relay catalytic cycloisomerization/(2 + 3) cycloadditions of enynamides to asymmetrically synthesize bispirocyclopentenes as PDE1B inhibitors. Commun Chem 2023; 6:128. [PMID: 37337043 DOI: 10.1038/s42004-023-00921-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Significant progress has been made in asymmetric synthesis through the use of transition metal catalysts combined with Lewis bases. However, the use of a dual catalytic system involving 4-aminopyridine and transition metal has received little attention. Here we show a metal/Lewis base relay catalytic system featuring silver acetate and a modified chiral pyrrolidinopyridine (PPY). It was successfully applied in the cycloisomerization/(2 + 3) cycloaddition reaction of enynamides. Bispirocyclopentene pyrazolone products could be efficiently synthesized in a stereoselective and economical manner (up to >19:1 dr, 99.5:0.5 er). Transformations of the product could access stereodivergent diastereoisomers and densely functionalized polycyclic derivatives. Mechanistic studies illustrated the relay catalytic model and the origin of the uncommon chemoselectivity. In subsequent bioassays, the products containing a privileged drug-like scaffold exhibited isoform-selective phosphodiesterase 1 (PDE1) inhibitory activity in vitro. The optimal lead compound displayed a good therapeutic effect for ameliorating pulmonary fibrosis via inhibiting PDE1 in vivo.
Collapse
Affiliation(s)
- Jing Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Yang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, P.R. China.
| |
Collapse
|
6
|
Gil-Ordóñez M, Maestro A, Andrés JM. Access to Spiropyrazolone-butenolides through NHC-Catalyzed [3 + 2]-Asymmetric Annulation of 3-Bromoenals and 1 H-Pyrazol-4,5-diones. J Org Chem 2023. [PMID: 37167601 DOI: 10.1021/acs.joc.3c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The stereoselective synthesis of spirocyclic pyrazolin-5-ones by N-heterocyclic carbene (NHC) organocatalysis has been less studied so far. For this reason and considering the interest of this class of compounds, here, we present the NHC-catalyzed [3 + 2]-asymmetric annulation of β-bromoenals and 1H-pyrazol-4,5-diones that achieves to produce chiral spiropyrazolone-butenolides. The synthesis is general for aryl and heteroaryl β-bromo-α,β-unsaturated aldehydes and 1,3-disubstituted pyrazolones. The spirobutenolides have been obtained in good yields (up to 88%) and enantioselectivities (up to 97:3 er). This constitutes the first described example using pyrazoldiones as the starting materials for this class of spiro compounds.
Collapse
Affiliation(s)
- Marta Gil-Ordóñez
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - Alicia Maestro
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| | - José M Andrés
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
| |
Collapse
|
7
|
Gil-Ordóñez M, Martín L, Maestro A, Andrés JM. Organocatalytic asymmetric synthesis of oxazolidino spiropyrazolinones via N, O-acetalization/aza Michael addition domino reaction between N-Boc pyrazolinone ketimines and γ-hydroxyenones. Org Biomol Chem 2023; 21:2361-2369. [PMID: 36847380 DOI: 10.1039/d2ob02290g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
A squaramide-catalyzed asymmetric N,O-acetalization/aza Michael addition domino reaction between N-Boc ketimines derived from pyrazolin-5-ones and γ-hydroxyenones has been developed for the construction of pyrazolinone embedded spirooxazolidines. A hydroquinine derived bifunctional squaramide catalyst was found to be the most effective for this cascade spiroannulation. This new protocol allows the generation of two stereocenters and the desired products are obtained in good yields with moderate to good diastereoselectivities (up to 3.3 : 1 dr) and high enantioselectivities (up to >99% ee) from a range of substituted N-Boc pyrazolinone ketimines and γ-hydroxyenones. The developed protocol is amenable for a scale-up reaction.
Collapse
Affiliation(s)
- Marta Gil-Ordóñez
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain.
| | - Laura Martín
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain.
| | - Alicia Maestro
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain.
| | - José M Andrés
- GIR-SintACat-Instituto Universitario CINQUIMA y Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain.
| |
Collapse
|
8
|
Li Y, Luo Y, Wang J, Shi H, Liao J, Wang Y, Chen Z, Xiong L, Zhang C, Wang T. Discovery of novel danshensu derivatives bearing pyrazolone moiety as potential anti-ischemic stroke agents with antioxidant activity. Bioorg Chem 2023; 131:106283. [PMID: 36436417 DOI: 10.1016/j.bioorg.2022.106283] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Neuroprotective agents with attenuation of oxidative stress by directly scavenging ROS and indirectly through Keap1-Nrf2 signal pathway activation may be a promising cerebral ischemic stroke therapeutic strategy. In this study, a series of novel danshensu derivatives bearing pyrazolone moieties with dual antioxidant effects were synthesized for the treatment of ischemic stroke. Most compounds exhibited considerable DPPH free radical scavenging ability and neuroprotective activity against H2O2-induced oxidative injury in PC12 neuronal cells, without cytotoxicity. Among these target compounds, Del03 displayed the strongest dose-dependent neuroprotective activity in vitro, directly downregulated intracellular ROS levels, and improved the oxidative stress parameters MDA, SOD, and LDH. Del03 also promoted Nrf2 translocation to the nucleus, subsequently increasing the expression of the Nrf2 downstream target HO-1. Molecular docking analysis revealed that Del03 could anchor to the key site of Keap1. Del03 possessed the ability to penetrate blood-brain barrier and displayed good ability on pharmacokinetic properties in rats Del03 possessed good BBB penetration efficiency, suitable pharmacokinetic properties in vivo. Del03 reduced cerebral infarction volume and promoted neurological function in a middle cerebral artery occlusion (MCAO) mouse model at a dose of 20 mg/kg by intravenous injection. The characteristics of Del03 detailed in this study demonstrate its potential as a therapeutic agent in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yi Li
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yunchun Luo
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jing Wang
- Department of Pharmacy, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Hao Shi
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jun Liao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Wang
- Baoshan Zhaohui New Drug R & D and Transformation Functional Platform, Zhaohui Pharmaceutical, Shanghai 201908, China
| | - Zhesheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York 11439, USA
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Chuan Zhang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
9
|
Kamlar M, Urban M, Veselý J. Enantioselective Synthesis of Spiro Heterocyclic Compounds Using a Combination of Organocatalysis and Transition-Metal Catalysis. CHEM REC 2023:e202200284. [PMID: 36703545 DOI: 10.1002/tcr.202200284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Indexed: 01/28/2023]
Abstract
Over the last ten years, the combination of organocatalysis with transition metal (TM) catalysis has become one of the most important toolboxes used for synthesizing optically pure compounds containing chiral quaternary centers, including spiro heterocyclic molecules. The dominant method in the enantioselective synthesis of spiro heterocyclic compounds based on synergistic catalysis includes chiral aminocatalysis and NHC catalysis, as already established covalent organocatalytic strategies. Another area of organocatalysis widely combined with TM catalysis producing enantiomerically enriched spiro heterocyclic compounds is non-covalent catalysis, dominated by chiral phosphoric acids, thiourea, and squaramide derivatives. This review article aims to summarize enantioselective methods used for constructing spirocyclic heterocycles based on a combination of organocatalysis and transition metal catalysis.
Collapse
Affiliation(s)
- Martin Kamlar
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta, Prague, CZECH REPUBLIC
| | - Michal Urban
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta, Prague, CZECH REPUBLIC
| | - Jan Veselý
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta, Prague, CZECH REPUBLIC
| |
Collapse
|
10
|
New Coordination Compounds Based on a Pyrazine Derivative: Design, Characterization, and Biological Study. Molecules 2022; 27:molecules27113467. [PMID: 35684404 PMCID: PMC9181841 DOI: 10.3390/molecules27113467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
New coordination compounds of Mn(II), Fe(III), Co(II), and Ni(II) and the biologically active ligand L (N′-benzylidenepyrazine-2-carbohydrazonamide) were synthesized and characterized by appropriate analytical techniques: elemental analysis (EA), thermogravimetric analysis (TG–DTG), infrared spectroscopy (FTIR), and flame-atomic absorption spectrometry (F-AAS). The biological activity of the obtained compounds was then comprehensively investigated. Rational use of these compounds as potential drugs was proven by ADME analysis. All obtained compounds were screened in vitro for antibacterial, antifungal, and anticancer activities. Some of the studied complexes exhibited significantly higher activity than the ligand alone.
Collapse
|
11
|
Huang W, Li G, He XH, Li HP, Zhao Q, Li DA, Zhu HP, Zhang YH, Zhan G. Design, synthesis, and biological evaluation of tetrahydro-αcarbolines as Akt1 inhibitors that inhibit colorectal cancer cells proliferation. ChemMedChem 2022; 17:e202200104. [PMID: 35355421 DOI: 10.1002/cmdc.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Indexed: 11/09/2022]
Abstract
A series of densely functionalized THαCs were designed and synthesized as Akt1 inhibitors. Organocatalytic [3+3] annulation between indolin-2-imines 1 and nitroallylic acetates 2 provided rapid access to this pharmacologically interesting framework. In vitro kinase inhibitory abilities and cytotoxicity assays revealed that compound 3af was the most potent Akt1 inhibitor, and mechanistic study indicated that compound 3af suppressed the proliferation of colorectal cancer cells via inducing apoptosis and autophagy. Molecular docking suggested that the indole fragment of 3af was inserted into the hydrophobic pocket of Akt1 protein, and the H-bond between 3af and residue Lys179 also contributed to the stable binding. This article provides an efficient strategy to design and synthesize biologically important compounds as novel Akt1 inhibitors.
Collapse
Affiliation(s)
- Wei Huang
- Chengdu University of Traditional Chinese Medicine, School of Pharmacy, 1166 Liu Tai Av., 610000, Chengdu, CHINA
| | - Guo Li
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, CHINA
| | - Xiang-Hong He
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, CHINA
| | - He-Ping Li
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, CHINA
| | - Qian Zhao
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, 610000, Chengdu, CHINA
| | - Dong-Ai Li
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, CHINA
| | - Hong-Ping Zhu
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, CHINA
| | - Yue-Hua Zhang
- Sichuan University, State Key Laboratory of Biotherapy and Department of Pharmacy, CHINA
| | - Gu Zhan
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine, State Key Laboratory of Southwestern Chinese Medicine Resources, CHINA
| |
Collapse
|
12
|
Qin R, Yu TT, Liu SJ, Wang YC, Luo ML, Chen BH, Zhao Q, Huang W. Asymmetric [4 + 2] Annulation of Cyclobutenones and Pyrazolone 4,5-Diones: Access to Novel δ-Lactone-Fused Spiropyrazolones. J Org Chem 2022; 87:5358-5370. [PMID: 35324180 DOI: 10.1021/acs.joc.2c00187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although numerous chiral pyrazolones with a six-membered spirocyclic center at the C4 position have been developed, the asymmetric construction of six-membered oxa-spiropyrazolones is still a challenging task in organic synthesis. Herein, we describe the [4 + 2] annulation of cyclobutanones and pyrazoline-4,5-diones for the efficient synthesis of δ-lactone-fused spiropyrazolone derivatives with generally high yields and good enantioselectivities under mild conditions. The successful scale-up synthesis and further transformation of the final product highlight the practicality and reliability of this reaction.
Collapse
Affiliation(s)
- Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ting-Ting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - You-Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng-Lan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ben-Hong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
13
|
Chen J, Zhang Y, Zhu DY, Zhang XJ, Yan M. Construction of Chiral Quaternary Carbon Stereocenters by Asymmetric Michael Addition of 4‐Amido‐5‐hydroxylpyrazoles to Ethylene Sulfonyl Fluoride. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jie Chen
- Sun Yat-Sen University School of Pharmaceutical Sciences CHINA
| | - Yue Zhang
- Sun Yat-Sen University School of Pharmaceutical Sciences CHINA
| | - Dong-yu Zhu
- Sun Yat-Sen University School of Pharmaceutical Sciences CHINA
| | - Xue-jing Zhang
- Sun Yat-Sen University School of Pharmaceutical Sciences No 132 Donghuanxi Road, Guangzhou Mega Center North 510006 guangzhou CHINA
| | - Ming Yan
- Sun Yat-Sen University School of Pharmaceutical Sciences CHINA
| |
Collapse
|
14
|
Wang G, Zhang S, Ding T, Li P, Sun Z. Highly Site‐ and Enantioselective
N‐H
Functionalization of N‐ Monosubstituted Aniline Derivatives Affording Pyrazolones Bearing a Quaternary Stereocenter. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guan‐Jun Wang
- Shanghai&School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Shu‐Yu Zhang
- Shanghai&School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Tong‐Mei Ding
- Shanghai&School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macao 999078 China
| | - Zhen‐Liang Sun
- Southern Medical University Affiliated Fengxian Hospital Shanghai China 201499
| |
Collapse
|
15
|
Wang B, Wei X, Huang Y, Wang W, Wei S, Qu J. Asymmetric [3 + 2] spiroannulation of pyrazolone-derived Morita–Baylis–Hillman carbonates with alkynyl ketones: facile access to spiro[cyclopentadiene-pyrazolone] scaffolds. Chem Commun (Camb) 2022; 58:9504-9507. [DOI: 10.1039/d2cc02963d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tertiary amine-catalyzed asymmetric [3 + 2] spiroannulation reaction of pyrazolone-derived Morita–Baylis–Hillman carbonates with alkynyl ketones was achieved under mild conditions. This protocol offers a facile approach to chiral spiro[cyclopentadiene-pyrazolone]...
Collapse
|
16
|
Maruoka H, Masumoto E. Spiro Heterocycles: Synthesis and Application of Spiro Pyrazol-3-one Derivatives. HETEROCYCLES 2022. [DOI: 10.3987/rev-21-975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
He S, Wang J, Zheng J, Luo QQ, Leng H, Zheng S, Peng C, Han B, Zhan G. Organocatalytic (5+1) benzannulation of Morita–Baylis–Hillman carbonates: synthesis of multisubstituted 4-benzylidene pyrazolones. NEW J CHEM 2022. [DOI: 10.1039/d2nj01949c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DABCO-catalyzed (5+1) cycloaddition of MBH carbonate undergoes an α-double deprotonation pathway to de novo assemble the benzene ring.
Collapse
Affiliation(s)
- Shurong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jinfeng Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qing-Qing Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Haijun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sixiang Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
18
|
He XH, Fu XJ, Zhan G, Zhang N, Li X, Zhu HP, Peng C, He G, Han B. Organocatalytic asymmetric synthesis of multifunctionalized α-carboline-spirooxindole hybrids that suppressed proliferation in colorectal cancer cells. Org Chem Front 2022. [DOI: 10.1039/d1qo01785c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An asymmetric organocatalytic cascade reaction has been reported for the rapid assembly of multifunctionalized α-carboline-spirooxindole hybrids, which suppressed proliferation in colorectal cancer cells.
Collapse
Affiliation(s)
- Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xue-Ju Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
19
|
Wang Y, He M, Li X, Chai J, Jiang Q, Peng C, He G, Huang W. Design, Synthesis, and Biological Evaluation of Pyrano[2,3-c]-pyrazole-Based RalA Inhibitors Against Hepatocellular Carcinoma. Front Chem 2021; 9:700956. [PMID: 34869198 PMCID: PMC8634879 DOI: 10.3389/fchem.2021.700956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/29/2021] [Indexed: 02/05/2023] Open
Abstract
The activation of Ras small GTPases, including RalA and RalB, plays an important role in carcinogenesis, tumor progress, and metastasis. In the current study, we report the discovery of a series of 6-sulfonylamide-pyrano [2,3-c]-pyrazole derivatives as novel RalA inhibitors. ELISA-based biochemical assay results indicated that compounds 4k–4r suppressed RalA/B binding capacities to their substrates. Cellular proliferation assays indicated that these RalA inhibitors potently inhibited the proliferation of HCC cell lines, including HepG2, SMMC-7721, Hep3B, and Huh-7 cells. Among the evaluated compounds, 4p displayed good inhibitory capacities on RalA (IC50 = 0.22 μM) and HepG2 cells (IC50 = 2.28 μM). Overall, our results suggested that a novel small-molecule RalA inhibitor with a 6-sulfonylamide-pyrano [2, 3-c]-pyrazole scaffold suppressed autophagy and cell proliferation in hepatocellular carcinoma, and that it has potential for HCC-targeted therapy.
Collapse
Affiliation(s)
- Yuting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyao He
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinlong Chai
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qinglin Jiang
- School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Squaramide-catalyzed asymmetric Michael/cyclization of 4-isothiocyanato pyrazolones and α,β-unsaturated ketones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Xu H, Hong R, Weng MY, Huang RL, Wang GW, Zhang Z. Regiodivergent Synthesis of 4,5'- and 4,4'-Imidazolinyl Spiropyrazolones from 4-Alkylidene Pyrazolones and Amidines. Org Lett 2021; 23:5305-5310. [PMID: 34213352 DOI: 10.1021/acs.orglett.1c01475] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The solvent-free reaction of 4-alkylidene pyrazolones with amidines can furnish 4,5'-imidazolinyl spiropyrazolones in good to excellent yields when promoted by N-iodosuccinimide under solvent-free ball-milling conditions, whereas it almost exclusively affords 4,4'-imidazolinyl spiropyrazolones if mediated by N-bromosuccinimide in heated toluene. On the basis of this switchable cyclization strategy, a powerful metal-free method for regioselective and diastereoselective synthesis of structurally diverse 4,5'- and 4,4'-imidazolinyl spiropyrazolones has been successfully developed.
Collapse
Affiliation(s)
- Hui Xu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China.,CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ran Hong
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ming-Yue Weng
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Rong-Lu Huang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Guan-Wu Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ze Zhang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry Application and School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
22
|
Han B, He XH, Liu YQ, He G, Peng C, Li JL. Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chem Soc Rev 2021; 50:1522-1586. [PMID: 33496291 DOI: 10.1039/d0cs00196a] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The efficacy and synthetic versatility of asymmetric organocatalysis have contributed enormously to the field of organic synthesis since the early 2000s. As asymmetric organocatalytic methods mature, they have extended beyond the academia and undergone scale-up for the production of chiral drugs, natural products, and enantiomerically enriched bioactive molecules. This review provides a comprehensive overview of the applications of asymmetric organocatalysis in medicinal chemistry. A general picture of asymmetric organocatalytic strategies in medicinal chemistry is firstly presented, and the specific applications of these strategies in pharmaceutical synthesis are systematically described, with a focus on the preparation of antiviral, anticancer, neuroprotective, cardiovascular, antibacterial, and antiparasitic agents, as well as several miscellaneous bioactive agents. The review concludes with a discussion of the challenges, limitations and future prospects for organocatalytic asymmetric synthesis of medicinally valuable compounds.
Collapse
Affiliation(s)
- Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. and Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
23
|
Mu J, Xie X, Xiong S, Zhang Y, Wang Y, Zhao Q, Zhu H, Huang W, He G. Discovery of spirooxindole–ferrocene hybrids as novel MDM2 inhibitors. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
Zhong YJ, Qi T, Ji YL, Huang H, Zhang X, Leng HJ, Peng C, Li JL, Han B. Highly Chemoselective [2+1] Annulation of α-Alkylidene Pyrazolones with α-Bromonitroalkenes: Synthesis of Pyrazolone-Based Vinylcyclopropanes and Computational Studies. J Org Chem 2021; 86:2582-2592. [PMID: 33423501 DOI: 10.1021/acs.joc.0c02674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A highly chemoselective [2+1] annulation of α-alkylidene pyrazolones with α-bromonitroalkenes has been achieved under mild conditions. α-Alkylidene pyrazolones were unprecedentedly used as a C1 synthon to participate in annulation reactions, providing access to diverse vinylcyclopropane-based pyrazolone products. In addition, a spectrum of pharmaceutically interesting pyrazole-fused pyranone oximes could be rapidly obtained through a [2+1] annulation/rearrangement sequential process. Computational studies disclosed the origin of the observed chemoselectivity of the [2+1] cycloaddition.
Collapse
Affiliation(s)
- Ya-Jun Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Ting Qi
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, People's Republic of China
| | - Yan-Ling Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Hua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, People's Republic of China
| | - Xiang Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, People's Republic of China
| | - Hai-Jun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, People's Republic of China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610052, People's Republic of China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|
25
|
Leng HJ, Wang YT, He XH, Xia HL, Xu PS, Xiang P, He QQ, Zhan G, Huang W. Design and Efficient Synthesis of RalA Inhibitors Containing the Dihydro-α-carboline Scaffold. ChemMedChem 2020; 16:851-859. [PMID: 33244883 DOI: 10.1002/cmdc.202000722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/02/2020] [Indexed: 11/07/2022]
Abstract
Ras-related protein RalA is a member of the Ras small GTPases superfamily. Its activation plays an important role in regulating tumor initiation, invasion, migration, and metastasis. In this study, we designed a new type of RalA inhibitor containing a dihydro-α-carboline scaffold. The structurally new dihydro-α-carboline derivatives could be efficiently synthesized in good yields through a newly developed three-component [3+2+1] cyclization reaction. Evaluation of the biological activity showed that some of the dihydro-α-carboline derivatives can inhibit RalA/B and proliferative activities of NSCLC cell lines. The 4-(pyridin-3-yl)-dihydro-α-carboline compound (3 o) was found to be the most potent derivative, with IC50 values of 0.43±0.03, 0.64±0.07, 0.93±0.10, and 1.54±0.15 μM against A549, H1299, H460, and H1975 cells, respectively. Mechanism investigation suggested that 3 o inhibits the RalA/B activation of A549, down-regulates Bcl-2, stimulates cytochrome c and PARP cleavage, and induces cell apoptosis. A molecular docking study revealed that 3 o can form stable hydrogen bonds with residues of RalA. Moreover, amide-π and alkyl-π interactions also contributed to the affinity between 3 o and RalA.
Collapse
Affiliation(s)
- Hai-Jun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.,Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, 610052, Chengdu, China
| | - Yu-Ting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Hou-Lin Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Peng-Shuai Xu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, 610052, Chengdu, China
| | - Peng Xiang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, 610052, Chengdu, China
| | - Qing-Qing He
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Sichuan Industrial Institute of Antibiotics, Chengdu University, 610052, Chengdu, China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| |
Collapse
|
26
|
Beesu M, Mehta G. Orthogonal Strapping of o-Haloaryl Ynones with Pyrazolones: A One-Pot, Domino Process toward Spiropyrazolones. J Org Chem 2020; 85:14229-14239. [PMID: 33040531 DOI: 10.1021/acs.joc.0c02087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new class of spiroannulated pyrazolone scaffolds have been assembled from diverse o-haloaryl ynones and β-bromoalkenyl ynones via base mediated, one-pot, metal free, orthogonal strapping (tethering) mediated by the recursive anion(s) derived from pyrazolones. These convenient, preparatively useful transformations proceed through either a tandem Michael addition-intramolecular SNAr reaction or a tandem Michael addition-intramolecular AdNE process to furnish a range of pharmacophoric, diverse, spiroannulated pyrazolones from readily accessible precursors.
Collapse
Affiliation(s)
- Mallesh Beesu
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Goverdhan Mehta
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| |
Collapse
|
27
|
Pedro JR, Vila C, Carceller-Ferrer L, Blay G. Recent Advances in Catalytic Enantioselective Synthesis of Pyrazolones with a Tetrasubstituted Stereogenic Center at the 4-Position. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractPyrazolone [2,4-dihydro-3H-pyrazol-4-one] represents one of the most important five-membered nitrogen heterocycles which is present in numerous pharmaceutical drugs and molecules with biological activity. Recently, many catalytic methodologies for the asymmetric synthesis of chiral pyrazolones have been established with great success, specially, for the synthesis of pyrazolones bearing a tetrasubstituted stereocenter at C-4. This review summarizes these excellent research studies since 2018, including representative examples and some mechanistic pathways explaining the observed stereochemistry.1 Introduction2 Catalytic Enantioselective Synthesis of Chiral Pyrazolones with a Full Carbon Tetrasubstituted Stereocenter at C-43 Catalytic Enantioselective Synthesis of Chiral Pyrazolones with a Quaternary Carbon Stereocenter at C-4 bearing a Heteroatom4 Catalytic Enantioselective Synthesis of Chiral Spiropyrazolones5 Conclusion
Collapse
|
28
|
Krishna AV, Reddy GS, Gorachand B, Ramachary DB. Organocatalytic Asymmetric Formal [3+3]‐Cycloaddition to Access 2,3‐Diazaspiro[4.5]deca‐3,6‐dien‐1‐ones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- A. Vamshi Krishna
- Catalysis Laboratory School of Chemistry University of Hyderabad 500 046 Hyderabad India
| | - G. Surendra Reddy
- Catalysis Laboratory School of Chemistry University of Hyderabad 500 046 Hyderabad India
| | - B. Gorachand
- Catalysis Laboratory School of Chemistry University of Hyderabad 500 046 Hyderabad India
| | | |
Collapse
|
29
|
Deng Q, Meng X. Recent Advances in the Cycloaddition Reactions of 2‐Benzylidene‐1‐benzofuran‐3‐ones, and Their Sulfur, Nitrogen and Methylene Analogues. Chem Asian J 2020; 15:2838-2853. [DOI: 10.1002/asia.202000550] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin Key Laboratory of Drug Targeting and Bioimaging School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P.R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin Key Laboratory of Drug Targeting and Bioimaging School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P.R. China
| |
Collapse
|
30
|
Li X, Ren B, Xie X, Tian Z, Chen FY, Gamble AB, Han B. Regiodivergent synthesis of aza-quaternary carbon derivatives from pyrazolinone ketimines and 1,2-dihydroquinolines. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Wang R, Chen H, Yan W, Zheng M, Zhang T, Zhang Y. Ferrocene-containing hybrids as potential anticancer agents: Current developments, mechanisms of action and structure-activity relationships. Eur J Med Chem 2020; 190:112109. [PMID: 32032851 DOI: 10.1016/j.ejmech.2020.112109] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Cancer is one of the most fatal threatens to human health throughout the world. The major challenges in the control and eradication of cancers are the continuous emergency of drug-resistant cancer and the low specificity of anticancer agents, creating an urgent need to develop novel anticancer agents. Organometallic compounds especially ferrocene derivatives possess remarkable structural and mechanistic diversity, inherent stability towards air, heat and light, low toxicity, low cost, reversible redox, ligand exchange, and catalytic properties, making them promising drug candidates for cancer therapy. Ferrocifen, a ferrocene-phenol hybrid, has demonstrated promising anticancer properties on drug-resistant cancers. Currently, Ferrocifen is in pre-clinical trial against cancers. Obviously, ferrocene moiety is a useful template for the development of novel anticancer agents. This review will provide an overview of ferrocene-containing hybrids with potential application in the treatment of cancers covering articles published between 2010 and 2020. The mechanisms of action, the critical aspects of design and structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Ruo Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Huahong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Weitao Yan
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingwen Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Tesen Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yaohuan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
32
|
Zhao Q, Zhu HP, Xie X, Mao Q, Liu YQ, He XH, Peng C, Jiang QL, Huang W. Novel HSP90-PI3K Dual Inhibitor Suppresses Melanoma Cell Proliferation by Interfering with HSP90-EGFR Interaction and Downstream Signaling Pathways. Int J Mol Sci 2020; 21:E1845. [PMID: 32156008 PMCID: PMC7084941 DOI: 10.3390/ijms21051845] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023] Open
Abstract
Melanoma is the deadliest form of skin cancer, and its incidence has continuously increased over the past 20 years. Therefore, the discovery of a novel targeted therapeutic strategy for melanoma is urgently needed. In our study, MTT-based cell proliferation assay, cell cycle, and apoptosis assays through flow cytometry, protein immunoblotting, protein immunoprecipitation, designing of melanoma xenograft models, and immunohistochemical/immunofluorescent assays were carried out to determine the detailed molecular mechanisms of a novel HSP90-PI3K dual inhibitor. Our compound, named DHP1808, was found to suppress A375 cell proliferation through apoptosis induction by activating the Fas/FasL signaling pathway; it also induced cell-cycle arrest and inhibited the cell migration and invasion of A375 cells by interfering with Hsp90-EGFR interactions and downstream signaling pathways. Our results indicate that DHP1808 could be a promising lead compound for the Hsp90/PI3K dual inhibitor.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Hong-Ping Zhu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China;
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Qing Mao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| | - Qing-Lin Jiang
- Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.Z.); (X.X.); (Q.M.); (Y.-Q.L.); (X.-H.H.); (C.P.)
| |
Collapse
|
33
|
Sun BB, Chen JB, Zhang JQ, Yang XP, Lv HP, Wang Z, Wang XW. Organo-catalyzed asymmetric cascade annulation reaction for the construction of bi-spirocyclic pyrazolone and oxindole derivatives. Org Chem Front 2020. [DOI: 10.1039/d0qo00001a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Organo-catalyzed tandem reaction between β,γ-unsaturated α-ketoesters and α-arylidene pyrazolinones was developed, and it provided chiral bi-spirocyclic pyrazolone and oxindole derivatives in high yields with good to excellent stereoselectivity.
Collapse
Affiliation(s)
- Bing-Bing Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Jun-Bo Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Jun-Qi Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Xiao-Peng Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Hao-Peng Lv
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| |
Collapse
|
34
|
Zhao Z, Dai X, Li C, Wang X, Tian J, Feng Y, Xie J, Ma C, Nie Z, Fan P, Qian M, He X, Wu S, Zhang Y, Zheng X. Pyrazolone structural motif in medicinal chemistry: Retrospect and prospect. Eur J Med Chem 2019; 186:111893. [PMID: 31761383 PMCID: PMC7115706 DOI: 10.1016/j.ejmech.2019.111893] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Abstract
The pyrazolone structural motif is a critical element of drugs aimed at different biological end-points. Medicinal chemistry researches have synthesized drug-like pyrazolone candidates with several medicinal features including antimicrobial, antitumor, CNS (central nervous system) effect, anti-inflammatory activities and so on. Meanwhile, SAR (Structure-Activity Relationship) investigations have drawn attentions among medicinal chemists, along with a plenty of analogues have been derived for multiple targets. In this review, we comprehensively summarize the biological activity and SAR for pyrazolone analogues, wishing to give an overall retrospect and prospect on the pyrazolone derivatives. The pyrazolone structural motif is a critical element of drugs aimed at different biological end-points. The pyrazolone analogues have been carried out to drug-like candidates with broad range of medicinal properties. This review wishes to give an overall retrospect and prospect on the pyrazolone derivatives.
Collapse
Affiliation(s)
- Zefeng Zhao
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xufen Dai
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Chenyang Li
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xiao Wang
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Jiale Tian
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Ying Feng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Jing Xie
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Cong Ma
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Zhuang Nie
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Peinan Fan
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Mingcheng Qian
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, 213164, Jiangsu, China; Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Xirui He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Shaoping Wu
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China.
| | - Yongmin Zhang
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China; Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Xiaohui Zheng
- School of Pharmacy, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| |
Collapse
|
35
|
Xie X, Xiang L, Peng C, Han B. Catalytic Asymmetric Synthesis of Spiropyrazolones and their Application in Medicinal Chemistry. CHEM REC 2019; 19:2209-2235. [PMID: 30821425 DOI: 10.1002/tcr.201800199] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 01/24/2023]
Abstract
Chiral spiropyrazolones are unique frameworks widely found in a large family of medicinally relevant compounds with various biological activities. Substantial research efforts have been invested toward stereoselectively by constructing spiro-cyclic structures. Over the past years, remarkable progress has been made in the organo- and metal-catalyzed asymmetric synthesis of spiropyrazolones through the utilization of accessible simple pyrazolone derivatives as raw materials. This review is organized according to the size of the spiro-ring fused at the 4-position of the pyrazolone framework. In the last part, the bio-evaluations of chiral spiropyrazolones for drug discovery are summarized.
Collapse
Affiliation(s)
- Xin Xie
- College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Southwestern Chinese Medicine Resource, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
36
|
Lu H, Zhang HX, Tan CY, Liu JY, Wei H, Xu PF. One-Pot Asymmetric Synthesis of Spiropyrazolone-Linked Cyclopropanes and Benzofurans through a General Michael Addition/Chlorination/Nucleophilic Substitution Sequence. J Org Chem 2019; 84:10292-10305. [DOI: 10.1021/acs.joc.9b01454] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hong Lu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Huan-Xin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chang-Yin Tan
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jin-Yu Liu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
37
|
Li X, Chen FY, Kang JW, Zhou J, Peng C, Huang W, Zhou MK, He G, Han B. Stereoselective Assembly of Multifunctional Spirocyclohexene Pyrazolones That Induce Autophagy-Dependent Apoptosis in Colorectal Cancer Cells. J Org Chem 2019; 84:9138-9150. [PMID: 31267754 DOI: 10.1021/acs.joc.9b01098] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei-Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing-Wen Kang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mu-Ke Zhou
- State Key Laboratory of Biotherapy and Department of Dermatology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Dermatology, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
38
|
Zhang M, Jiang L, Tao J, Pan Z, He M, Su D, He G, Jiang Q. Design, synthesis and biological evaluation of 4-aniline-thieno[2,3-d]pyrimidine derivatives as MNK1 inhibitors against renal cell carcinoma and nasopharyngeal carcinoma. Bioorg Med Chem 2019; 27:2268-2279. [DOI: 10.1016/j.bmc.2019.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 02/07/2023]
|
39
|
Qin F, Wang Y, Jiang X, Wang Y, Zhang N, Wen X, Wang L, Jiang Q, He G. Design, synthesis and molecular mechanisms of novel dual inhibitors of heat shock protein 90/phosphoinositide 3-kinase alpha (Hsp90/PI3Kα) against cutaneous melanoma. J Enzyme Inhib Med Chem 2019; 34:909-926. [PMID: 30957641 PMCID: PMC8853710 DOI: 10.1080/14756366.2019.1596903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Overexpression of heat shock protein 90 (Hsp90) is common in various types of cancer. In cutaneous melanoma, a cancer with one of the high levels of Hsp90 overexpression, such expression was correlated with a panel of protein kinases, thus offering an opportunity to identify Hsp90-based multi-kinase inhibitors for novel cancer therapies. Towards this goal, we utilized a 2,4-dihydroxy-5-isopropylbenzate-based Hsp90 inhibitor scaffold and thieno[2,3-d]pyrimidine-based kinase inhibitor scaffold to develop a Hsp90-inhibiting compound library. Our inhibitory compound named 8m inhibited Hsp90 and PI3Kα with an IC50 value of 38.6 nM and 48.4 nM, respectively; it displayed improved cellular activity which could effectively induce cell cycle arrest and apoptosis in melanoma cells and lead to the inhibition of cell proliferation, colony formation, migration and invasion. Our results demonstrated 8m to be a promising lead compound for further therapeutic potential assessment of Hsp90/PI3Kα dual inhibitors in melanoma targeted therapy.
Collapse
Affiliation(s)
- Feifei Qin
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Yali Wang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Xian Jiang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Yujia Wang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Nan Zhang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Xiang Wen
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Lian Wang
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| | - Qinglin Jiang
- c School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College , Chengdu , China
| | - Gu He
- a Department of Dermatology, State Key Laboratory of Biotherapy , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China.,b Department of Cardiology , West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy , Chengdu , China
| |
Collapse
|
40
|
Xu J, Hu L, Hu H, Ge S, Liu X, Feng X. Enantioselective Vinylogous Michael–Aldol Reaction To Synthesize Spirocyclohexene Pyrazolones in Aqueous Media. Org Lett 2019; 21:1632-1636. [DOI: 10.1021/acs.orglett.9b00168] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinxiu Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Linfeng Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Haipeng Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shulin Ge
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
41
|
Ji YL, Li HP, Ai YY, Li G, He XH, Huang W, Huang RZ, Han B. Enantio- and diastereoselective synthesis of spiropyrazolones via an organocatalytic [1 + 2 + 3] multicomponent reaction. Org Biomol Chem 2019; 17:9217-9225. [DOI: 10.1039/c9ob01927h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric catalytic [1 + 2 + 3] multicomponent reaction of malononitrile, benzaldehyde and α-arylidene pyrazolinones to produce spiropyrazolones in high yields, with excellent enantioselectivities and good diastereoselectivities.
Collapse
Affiliation(s)
- Yan-Ling Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - He-Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - Yue-Yan Ai
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - Guo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - Rui-Zhen Huang
- Hospital of Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu
- China
| |
Collapse
|
42
|
Liu S, Bao X, Wang B. Pyrazolone: a powerful synthon for asymmetric diverse derivatizations. Chem Commun (Camb) 2018; 54:11515-11529. [DOI: 10.1039/c8cc06196c] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This feature article reports recent advances in the asymmetric diverse derivatizations of the pyrazolone scaffold.
Collapse
Affiliation(s)
- Siyuan Liu
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Xiaoze Bao
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals
- School of Pharmaceutical Science and Technology
- Dalian University of Technology
- Dalian 116024
- P. R. China
| |
Collapse
|