1
|
Sun J, Jiang S, Liu Y, Pan L, Liu YG, Zeng B. Recent Progress on NHC-Catalyzed 1,6-Conjugate Addition Reactions. CHEM REC 2024; 24:e202400125. [PMID: 39417763 DOI: 10.1002/tcr.202400125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Indexed: 10/19/2024]
Abstract
As a significant variant of the Michael reaction, the 1,6-addition reaction has undergone considerable development over the past decade. This effective strategy enables the synthesis of a variety of novel and potentially bioactive functional molecules. In this review, we summarize the recent progress in NHC-catalyzed 1,6-addition reactions, highlighting their efficiency in the rapid synthesis of complex functional molecules. We also provide our perspectives on the future development of this dynamic and highly active research area.
Collapse
Affiliation(s)
- Jun Sun
- College of Chemistry and Chemical Engineering, Guizhou University of Engineering Science, Xueyuan Road, Qixingguan District, Bijie, 551700, China
| | - Shichun Jiang
- College of Chemistry and Chemical Engineering, Guizhou University of Engineering Science, Xueyuan Road, Qixingguan District, Bijie, 551700, China
| | - Yonggui Liu
- College of Chemistry and Chemical Engineering, Guizhou University of Engineering Science, Xueyuan Road, Qixingguan District, Bijie, 551700, China
| | - Ling Pan
- College of Chemistry and Chemical Engineering, Guizhou University of Engineering Science, Xueyuan Road, Qixingguan District, Bijie, 551700, China
| | - Ying-Guo Liu
- Henan Institute of Advanced Technology, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P. R. China
- Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bing Zeng
- College of Chemistry and Chemical Engineering, Guizhou University of Engineering Science, Xueyuan Road, Qixingguan District, Bijie, 551700, China
| |
Collapse
|
2
|
Yang X, Jiang S, Jin Z, Li T. Application of Asymmetric Catalysis in Chiral Pesticide Active Molecule Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17153-17165. [PMID: 39051451 DOI: 10.1021/acs.jafc.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The different configurations of chiral pesticides generally have significant influence on their biological activities. Chiral agrochemicals with high optical purities have become a prominent topic in the research field of new pesticides due to their advantages including lower toxicity, higher efficiency, and reduced residue levels. However, most commercially available pesticides that possess chiral elements are still used in their racemic forms. To date, asymmetric catalysis has emerged as a versatile tool for the enantioselective synthesis of various chiral agrochemicals and novel chiral pesticide active molecules. This perspective provides a comprehensive overview of the applications of diverse asymmetric catalytic approaches in the facile preparation of numerous novel pesticide active molecules, and our own outlook on the future development of this highly active research direction is also presented at the end of this review.
Collapse
Affiliation(s)
- Xiaoqun Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shichun Jiang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Lei X, Sun Y, Guo Q, Shi J. Base mediated aza-[2 + 1] annulation and regioselective aziridine ring-opening cascade: mild synthesis of functionalized β-amino ketones from cyclic N-sulfonyl aldimines and α-carbonyl sulfonium salts. RSC Adv 2024; 14:17178-17183. [PMID: 38808243 PMCID: PMC11131043 DOI: 10.1039/d4ra02817a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
Cyclic N-sulfonyl aldimines are well-known aza-[2C]-synthons for various [2 + n] annulation reactions. Herein we describe a novel base mediated [2 + 1] annulation and a regioselective aziridine ring-opening reaction cascade, which provides an efficient and distinct synthetic strategy from readily available cyclic N-sulfonyl aldimines and α-carbonyl sulfonium salts leading to β-amino ketone derivatives through the corresponding fused tri-substituted aziridines. This one-pot, two-step process involves formation of C-C and C-N bonds and subsequent cleavage of a C-N bond. The features of the developed reaction include the use of mild reaction conditions, broad substrate scope, and excellent yields. The synthetic utility of this approach was demonstrated by gram-scale operation and further product derivatizations.
Collapse
Affiliation(s)
- Xiaoqiang Lei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Yanyan Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Qinglan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Jiangong Shi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| |
Collapse
|
4
|
Varga PR, Keglevich G. The Last Decade of Optically Active α-Aminophosphonates. Molecules 2023; 28:6150. [PMID: 37630402 PMCID: PMC10459122 DOI: 10.3390/molecules28166150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
α-Aminophosphonates and related compounds are important due to their real and potential biological activity. α-Aminophosphonates may be prepared by the Kabachnik-Fields condensation of oxo compounds, amines and dialkyl phosphites, or by the aza-Pudovik addition of the same P-reagents to imines. In this review, the methods that allow for the synthesis of α-aminophosphonates with optical activity are surveyed. On the one hand, optically active catalysts or ligands may induce enantioselectivity during the Kabachnik-Fields reaction. On the other hand, asymmetric catalysis during the aza-Pudovik reaction, or hydrogenations of iminophosphonates, may prove to be a useful tool. Lastly yet importantly, it is possible to start from optically active reagents that may be associated with diastereoselectivity. The "green" aspects of the different syntheses are also considered.
Collapse
Affiliation(s)
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary;
| |
Collapse
|
5
|
Rani P, Prakash M, Samanta S. Organobase-catalyzed Mannich reaction of cyclic N-sulfonyl imines and 1,2-diketones: a sustainable approach to 4-(3-arylquinoxalin-2-ylmethyl)sufamidates. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
6
|
Chen X, He P, Xia S, Cui L, Zhong G, Yang L. NHC-Activations on α-, β-, γ-, and Beyond. CHEM REC 2023:e202200279. [PMID: 36916715 DOI: 10.1002/tcr.202200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/27/2023] [Indexed: 03/15/2023]
Abstract
Over the recent decades, due to the special electronic characteristics and diverse reactivities, N-heterocyclic carbene (NHC) has received significant interest in organocatalyzed reactions. The formation of Breslow intermediates by NHC can convert into acyl anion equivalent, enolates, homoenolate, acyl azolium, and vinyl enolate etc., and the cycloaddition reactions of these species has attracted lots of attention. In this review, we focus on the summry of the development of NHC-activation of carbonyl carbon (or imine carbon) in situ, α-, β-, γ-, and beyond, and the cycloaddition reaction of these species.
Collapse
Affiliation(s)
- Xiaoyu Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Pengyu He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Siqi Xia
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Lixin Cui
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Guofu Zhong
- Department of Chemistry, Eastern Institute for Advanced Study, Ningbo, 315200, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Limin Yang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
7
|
Kaboudin B, Daliri P, Faghih S, Esfandiari H. Hydroxy- and Amino-Phosphonates and -Bisphosphonates: Synthetic Methods and Their Biological Applications. Front Chem 2022; 10:890696. [PMID: 35721002 PMCID: PMC9200139 DOI: 10.3389/fchem.2022.890696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Phosphonates and bisphosphonates are stable analogs of phosphates and pyrophosphates that are characterized by one and two carbon–phosphorus bonds, respectively. Among the various phosphonates and bisphosphonates, hydroxy and amino substitutes are of interest as effective in medicinal and industrial chemistry. For example, hydroxy bisphosphonates have proven to be effective for the prevention of bone loss, especially in osteoporotic disease. On the other hand, different substitutions on the carbon atom connected to phosphorus have led to the synthesis of many different hydroxy- and amino-phosphonates and -bisphosphonates, each with its distinct physical, chemical, biological, therapeutic, and toxicological characteristics. Dialkyl or aryl esters of phosphonate and bisphosphonate compounds undergo the hydrolysis process readily and gave valuable materials with wide applications in pharmaceutical and agriculture. This review aims to demonstrate the ongoing preparation of various classes of hydroxy- and amino-phosphonates and -bisphosphonates. Furthermore, the current review summarizes and comprehensively describes articles on the biological applications of hydroxyl- and amino-phosphonates and -bisphosphonates from 2015 until today.
Collapse
|
8
|
Wang X, Feng F, Nie J, Zhang F, Ma J. Enantioselective Construction of Amino Carboxylic‐Phosphonic Acid Derivatives Enabled by Chiral Amino Thiourea‐Catalyzed Decarboxylative Mannich Reaction. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xue‐Qi Wang
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 People's Republic of China
| | - Fang‐Fang Feng
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 People's Republic of China
| | - Jing Nie
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 People's Republic of China
| | - Fa‐Guang Zhang
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 People's Republic of China
| | - Jun‐An Ma
- Department of Chemistry Tianjin Key Laboratory of Molecular Optoelectronic Sciences Frontiers Science Center for Synthetic Biology (Ministry of Education) Tianjin Collaborative Innovation Centre of Chemical Science & Engineering Tianjin University Tianjin 300072
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 People's Republic of China
| |
Collapse
|
9
|
NHC Catalyzed β-Carbon functionalization of carboxylic esters towards formation of δ-Lactams: A mechanistic study. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Zhen G, Jiang K, Yin B. Progress in Organocatalytic Dearomatization Reactions Catalyzed by Heterocyclic Carbenes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guangjin Zhen
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Kai Jiang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Biaolin Yin
- South China University of Technology Dept. of Chenistry and chemical engineering Wushan Street 510640 Guangzhou CHINA
| |
Collapse
|
11
|
Goud SB, Guin S, Prakash M, Samanta S. Cu(OAc) 2/DABCO-mediated domino reaction of vinyl malononitriles with cyclic sulfamidate imines: access to 6-hydroxyaryl-2-aminonicotinonitriles. Org Biomol Chem 2022; 20:352-357. [PMID: 34931209 DOI: 10.1039/d1ob02095a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel Cu(II)-salt/DABCO-mediated one-pot access to a myriad of highly substituted biologically relevant 2-aminonicotinonitriles possessing a resourceful phenolic moiety with satisfactory yields is reported. This method involves cyclic sulfamidate imines as 1C1N sources and different kinds of acyclic/cyclic vinyl malononitriles as 4C sources for pyridine synthesis via a vinylogous Mannich-cycloaromatization sequence process, creating two new C-N bonds under mild conditions. Importantly, this de novo strategy is applicable to gram-scale syntheses, underlining the method's practicability and allowing for a wide range of substrates with excellent functional group tolerance.
Collapse
Affiliation(s)
- S Banuprakash Goud
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552 India.
| | - Soumitra Guin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552 India.
| | - Meher Prakash
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552 India.
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, 453552 India.
| |
Collapse
|
12
|
Chen Q, Zheng X, Guo F, Liang K, Zhou F. Transition-Metal-Free Addition of Dialkyl Phosphites to Phthalazin-2-ium Bromide: Synthesis of α-Aminophosphonate Analogues. J Org Chem 2021; 86:18278-18286. [PMID: 34870429 DOI: 10.1021/acs.joc.1c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
α-Aminophosphonate analogues containing a phthalazine skeleton were efficiently obtained by a new transition-metal-free addition of dialkyl phosphites to phthalazin-2-ium bromide under mild conditions. A mechanistic study using isotope labeling and radical inhibition experiment revealed that the present transformation passes through a nucleophilic addition of dialkyl phosphates, rather than an insertion of P-H to carbenes.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Xuanming Zheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Fang Guo
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Kun Liang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Fanrui Zhou
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
13
|
Pavithra T, Devi ES, Maheswari CU. Recent Advances in N‐Heterocyclic Carbene Catalyzed Oxidative Cyclization for the Formation of Heterocycles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- T. Pavithra
- Department of Chemistry, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| | - E. Sankari Devi
- Department of Chemistry, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| | - C. Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| |
Collapse
|
14
|
Maestro A, del Corte X, López-Francés A, Martínez de Marigorta E, Palacios F, Vicario J. Asymmetric Synthesis of Tetrasubstituted α-Aminophosphonic Acid Derivatives. Molecules 2021; 26:3202. [PMID: 34071844 PMCID: PMC8199250 DOI: 10.3390/molecules26113202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
Due to their structural similarity with natural α-amino acids, α-aminophosphonic acid derivatives are known biologically active molecules. In view of the relevance of tetrasubstituted carbons in nature and medicine and the strong dependence of the biological activity of chiral molecules into their absolute configuration, the synthesis of α-aminophosphonates bearing tetrasubstituted carbons in an asymmetric fashion has grown in interest in the past few decades. In the following lines, the existing literatures for the synthesis of optically active tetrasubstituted α-aminophosphonates are summarized, comprising diastereoselective and enantioselective approaches.
Collapse
Affiliation(s)
- Aitor Maestro
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
- Stratingh Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Xabier del Corte
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| | - Adrián López-Francés
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| | - Edorta Martínez de Marigorta
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| | - Francisco Palacios
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| | - Javier Vicario
- Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados “Lucio Lascaray”-Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.M.); (X.d.C.); (A.L.-F.); (E.M.d.M.)
| |
Collapse
|
15
|
Xie Y, Yang X, Xu J, Chai H, Liu H, Zhang J, Song J, Gao Y, Jin Z, Chi YR. Access to Allene‐Containing Molecules via Enantioselective Reactions of Azolium Cumulenolate Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yongtao Xie
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Jun Xu
- College of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Huifang Chai
- College of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 China
| | - Hongxia Liu
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Jun Song
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Yuan Gao
- International Joint Research Center for Molecular Science College of Chemistry and Environmental Engineering College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Huaxi District Guiyang 550025 China
- Division of Chemistry & Mathematical Science School of Physical & Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
16
|
Xie Y, Yang X, Xu J, Chai H, Liu H, Zhang J, Song J, Gao Y, Jin Z, Chi YR. Access to Allene-Containing Molecules via Enantioselective Reactions of Azolium Cumulenolate Intermediates. Angew Chem Int Ed Engl 2021; 60:14817-14823. [PMID: 33834597 DOI: 10.1002/anie.202102177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Indexed: 12/17/2022]
Abstract
Azolium cumulenolates are a special type of intermediates in N-heterocyclic carbene catalysis. They contain elongated linear structures with three contiguous C=C bonds and sterically unhindered α-carbon atoms. These structural features make it difficult to develop enantioselective reactions for these intermediates. Here we disclose the first carbene-catalyzed highly enantioselective addition reactions of azolium cumulenolates. The reaction starts with alkynals as the precursors for azolium cumulenolate intermediates that undergo enantioselective addition to activated ketones. From the same set of substrates, both allene and spirooxindole products can be obtained with high yields and excellent enantioselectivities. The allene moieties in our optically enriched products carry rich reactivities and can be transformed to diverse molecules. The spirooxindole scaffolds in our products are important structural motifs in natural products and medicines.
Collapse
Affiliation(s)
- Yongtao Xie
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xing Yang
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jun Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Huifang Chai
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Hongxia Liu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jun Song
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuan Gao
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhichao Jin
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University Huaxi District, Guiyang, 550025, China
- Division of Chemistry & Mathematical Science, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
17
|
Khassenova G, García Mancheño O. Lewis Base‐Brønsted Acid Co‐catalyzed Morita‐Baylis‐Hillman Reaction of Cyclic Sulfamidate Imines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gaukhar Khassenova
- Organic Chemistry Institute University of Münster Corrensstrasse 36 48149 Münster Germany
| | - Olga García Mancheño
- Organic Chemistry Institute University of Münster Corrensstrasse 36 48149 Münster Germany
| |
Collapse
|
18
|
Guo S, He F, Song B, Wu J. Future direction of agrochemical development for plant disease in China. Food Energy Secur 2021. [DOI: 10.1002/fes3.293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Shengxin Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| | - Feng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| | - Jian Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering Key Laboratory of Green Pesticide and Agricultural Bioengineering Ministry of Education Guizhou University Guiyang China
| |
Collapse
|
19
|
Zhao C, Blaszczyk SA, Wang J. Asymmetric reactions of N-heterocyclic carbene (NHC)-based chiral acyl azoliums and azolium enolates. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
20
|
He C, Zhou Y, Li Z, Xu J, Chen X. N-Heterocyclic carbene catalyzed asymmetric [3 + 3] cycloaddtion of β,β-disubstituted, α,β-unsaturated carboxylic esters with 3-aminobenzofurans. Org Chem Front 2021. [DOI: 10.1039/d0qo01489c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
An NHC-catalyzed β-carbon functionalization reaction to afford enantioenriched benzofuran fused δ-lactams bearing an all-carbon quaternary stereocenter is documented.
Collapse
Affiliation(s)
- Chonglong He
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Yipeng Zhou
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Zhanhuan Li
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Jianfeng Xu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xingkuan Chen
- Department of Chemistry
- Jinan University
- Guangzhou 510632
- China
| |
Collapse
|
21
|
Fu X, Hao Y, Bai HY, Duan A, Zhang SY. Co-Catalyzed Direct Regio- and Enantioselective Intermolecular γ-Amination of N-Acylpyrazoles. Org Lett 2020; 23:25-30. [DOI: 10.1021/acs.orglett.0c03522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xin Fu
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Environmental Science & Technology, Hunan University, Changsha 410082, China
| | - Yu Hao
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - He-Yuan Bai
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Abing Duan
- College of Environmental Science & Technology, Hunan University, Changsha 410082, China
| | - Shu-Yu Zhang
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Chemistry and Chemical Engineering, and Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Wang CC, Ma ZW, Qu YL, Liu ZJ, Chen XP, Zhou J, Chen YJ. Synthesis of Sulfamate-Fused 2-Aminopyrroles via an Isocyanide-Based Three Component [1+2+2] Annulation. Chem Asian J 2020; 15:560-563. [PMID: 31903670 DOI: 10.1002/asia.201901780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/03/2020] [Indexed: 01/01/2023]
Abstract
An efficient preparation of sulfamate-fused 2-aminopyrroles was achieved through an isocyanide-based three-component [1+2+2] annulation of isocyanides, dialkyl acetylenedicarboxylates, and sulfamate-derived cyclic imines in good to excellent yields (up to 99 %). This reaction proceeds smoothly without any activation or modification of substances under neutral and metal-free conditions. The reaction could also be conveniently performed on a gram scale.
Collapse
Affiliation(s)
- Chuan-Chuan Wang
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 2 Yingcai Street, Zhengzhou, 450044, Henan, P. R. China.,College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Zhi-Wei Ma
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 2 Yingcai Street, Zhengzhou, 450044, Henan, P. R. China
| | - Ya-Li Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Zhi-Jing Liu
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 2 Yingcai Street, Zhengzhou, 450044, Henan, P. R. China
| | - Xiao-Pei Chen
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 2 Yingcai Street, Zhengzhou, 450044, Henan, P. R. China
| | - Jing Zhou
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Ya-Jing Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| |
Collapse
|
23
|
Maestro A, Marigorta EM, Palacios F, Vicario J. α‐Iminophosphonates: Useful Intermediates for Enantioselective Synthesis of α‐Aminophosphonates. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Aitor Maestro
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de FarmaciaUniversidad del País Vasco UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Edorta Martinez Marigorta
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de FarmaciaUniversidad del País Vasco UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Francisco Palacios
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de FarmaciaUniversidad del País Vasco UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| | - Javier Vicario
- Departamento de Química Orgánica I Centro de Investigación y Estudios Avanzados “Lucio Lascaray” Facultad de FarmaciaUniversidad del País Vasco UPV/EHU Paseo de la Universidad 7 01006 Vitoria-Gasteiz Spain
| |
Collapse
|
24
|
Huang H, Li QZ, Liu YQ, Leng HJ, Xiang P, Dai QS, He XH, Huang W, Li JL. Dearomative [4 + 2] annulations between 3-nitroindoles and enals through oxidative N-heterocyclic carbene catalysis. Org Chem Front 2020. [DOI: 10.1039/d0qo00868k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel intermolecular dearomative [4 + 2] annulation of 3-nitroindoles and enals under oxidative N-heterocyclic carbene catalysis has been developed. This protocol was also suitable for the oxidative cyclisation of 2-nitrobenzothiophenes with enals.
Collapse
Affiliation(s)
- Hua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Qing-Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- PR China
| | - Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Hai-Jun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Peng Xiang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- PR China
| | - Qing-Song Dai
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- PR China
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- School of Pharmacy
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
- China
| | - Jun-Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu 610052
- PR China
| |
Collapse
|
25
|
Verma RS, Khatana AK, Mishra M, Kumar S, Tiwari B. Access to enantioenriched 4-phosphorylated δ-lactones from β-phosphorylenones and enals via carbene organocatalysis. Chem Commun (Camb) 2020; 56:7155-7158. [DOI: 10.1039/d0cc03204b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-heterocyclic carbene (NHC) catalyzed direct access to enantioenriched 4-phosphorylated δ-lactones from β-phosphorylenones and enals has been achieved.
Collapse
Affiliation(s)
- Ram Subhawan Verma
- Division of Molecular Synthesis & Drug Discovery
- Centre of Biomedical Research
- Lucknow
- India
| | - Anil Kumar Khatana
- Division of Molecular Synthesis & Drug Discovery
- Centre of Biomedical Research
- Lucknow
- India
| | - Monika Mishra
- Division of Molecular Synthesis & Drug Discovery
- Centre of Biomedical Research
- Lucknow
- India
| | - Shailesh Kumar
- Department of Chemistry
- Babasaheb Bhimrao Ambedkar University
- Lucknow
- India
| | - Bhoopendra Tiwari
- Division of Molecular Synthesis & Drug Discovery
- Centre of Biomedical Research
- Lucknow
- India
| |
Collapse
|
26
|
Zhou J, Zhang H, Chen XL, Qu YL, Zhu Q, Feng CG, Chen YJ. Regio- and Diastereoselective Access to 4-Imidazolidinones via an Aza-Mannich Initiated Cyclization of Sulfamate-Derived Cyclic Imines with α-Halo Hydroxamates. J Org Chem 2019; 84:9179-9187. [DOI: 10.1021/acs.joc.9b01128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Zhou
- School of Pharmaceutical Sciences; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, PR China
| | - Hong Zhang
- Mineral Processing and Biometallurgy Institute, Rock and Mineral Testing Center of Henan Province, 28 Jinshui Road, Zhengzhou, Henan 450012, PR China
| | - Xue-Lian Chen
- School of Pharmaceutical Sciences; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, PR China
| | - Ya-Li Qu
- School of Pharmaceutical Sciences; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, PR China
| | - Qianqian Zhu
- College of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, PR China
| | - Chen-Guo Feng
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, PR China
| | - Ya-Jing Chen
- School of Pharmaceutical Sciences; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China; Co-innovation Center of Henan Province for New Drug R&D and Preclinical Safety, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, PR China
| |
Collapse
|