1
|
Wu Z, Wang T, Zhao Z, Ji Y, Bai H, Jiang Y, Wang X, Nawaz H, He A, Xia J, Xu J, Chen S, Hu L. Niobium-based single-atom catalyst promoted fractionation of lignocellulose in choline chloride-lactic acid deep eutectic solvent. Int J Biol Macromol 2024; 269:132055. [PMID: 38704073 DOI: 10.1016/j.ijbiomac.2024.132055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Pretreatment is the key step to convert lignocelluloses to sustainable biofuels, biochemicals or biomaterials. In this study, a green pretreatment method based on choline chloride-lactic acid deep eutectic solvent (ChCl-LA) and niobium-based single-atom catalyst (Nb/CN) was developed for the fractionation of corn straw and further enzymatic hydrolysis of cellulose. With this strategy, significant lignin removal of 96.5 % could be achieved when corn straw was pretreated by ChCl-LA (1:2) DES over Nb/CN under 120 °C for 6 h. Enzymatic hydrolysis of the cellulose-enriched fraction (CEF) presented high glucose yield of 92.7 % and xylose yield of 67.5 %. In-depth investigations verified that the high yields of fractions and monosaccharides was attributed to the preliminary fractionation by DES and the deep fractionation by Nb/CN. Significantly, compared to other reported soluble catalysts, the synthesized single-atom catalyst displayed excellent reusability by simple filtration and enzymatic hydrolysis. The recyclability experiments showed that the combination of ChCl-LA DES and Nb/CN could be repeated at least three times for corn straw fractionation, moreover, the combination displayed remarkable feedstock adaptability.
Collapse
Affiliation(s)
- Zhen Wu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China.
| | - Tao Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Zihe Zhao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Yifan Ji
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Hongli Bai
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Yetao Jiang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Xiaoyu Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Haq Nawaz
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lei Hu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China.
| |
Collapse
|
2
|
Yuan M, Li C, Zhang B, Wang J, Zhu J, Ji J, Ma Y. A mild and one-pot method to activate lignin-derived biomass by using boric acid for aqueous tetracycline antibiotics removal in water. CHEMOSPHERE 2021; 280:130877. [PMID: 34162102 DOI: 10.1016/j.chemosphere.2021.130877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
A mild and one-pot activation approach of activated carbon was found. The feasibility of boric acid as the activated reagent which was used for the adsorption of four tetracyclines antibiotics (TCs) in water. Boric acid activated carbon (BAC) from bioresource has a much higher removal efficiency than currently reported biochar. The maximum adsorption capacity of BAC is 173.9 mg/g for TCs. BAC is an ecofriendly, nontoxic, and low-cost absorbent from sawdust waste. BAC and TCs could keep coalescing at least 55 days on the surface without stable release. BAC was fully characterized by using scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, Raman, zeta potential, and Brunauer-Emmett-Teller analysis; the large surface area and rich pore structure were proved. The interaction between BAC and TCs are hydrogen bond interaction, π-π interaction, and electrostatic interaction. These interactions are also related to the surface charge of BAC and the TCs' species of ions in different pH. Furthermore, the adsorption kinetics and adsorption isotherm of BAC were studied thoroughly. The pseudo-first-order, pseudo-second-order, intra-particle diffusion, Elovich Langmuir, Freundlich, and Dubinin-Radushkevich models were fitted and the physical adsorption process was proved. After the study on adsorption thermodynamics, adsorption exhibits a spontaneous and favorable process.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Changsheng Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Bingjie Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jianli Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jianhui Zhu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Jiawen Ji
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Yongqiang Ma
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|