1
|
Ma LF, Luo SR, Liu QQ, Tang RS, Chen NY, Luo D, Guo L, Li J, Wu R, Zhan ZJ. Neuroprotective lindenane sesquiterpenoids from the roots of Lindera aggregata (Sims) Kosterm. PHYTOCHEMISTRY 2025; 235:114452. [PMID: 39986409 DOI: 10.1016/j.phytochem.2025.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Eleven previously undescribed lindenane sesquiterpenoids, lindaggrols A-K (1-11), were isolated from the roots of Lindera aggregata (Sims) Kosterm, together with five known ones. Their structures were elucidated by HR-ESI-MS, NMR, and single-crystal X-ray diffraction analyses. Lindaggrol A (1) is an undescribed rearranged dinor-lindenane with an unprecedented 3/5/5 tricyclic scaffold. All isolated compounds were assayed for their neuroprotective effects against erastin-induced ferroptosis in HT-22 cells. Among them, 3, 12 and 14 exhibited significant neuroprotective activities with EC50 values ranging from 1.4 to 8.7 μM.
Collapse
Affiliation(s)
- Lie-Feng Ma
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Shan-Rong Luo
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Qian-Qing Liu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Rui-Si Tang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Ning-Yu Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Di Luo
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lu Guo
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Rui Wu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China.
| | - Zha-Jun Zhan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
2
|
Tao Y, Deng Y, Wang P. Traditional uses, phytochemistry, pharmacology, processing methods and quality control of Lindera aggregata (Sims) Kosterm: A critical review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116954. [PMID: 37499843 DOI: 10.1016/j.jep.2023.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dried root tubers of L.aggregata have been widely used in Chinese herbal medicine for thousands of years to promote qi, relieve pain, warm kidney, and disperse cold. AIM OF THE STUDY This review aims to assess the research progress of L.aggregata, to comprehensively understand its development status, to point out the shortcomings of the existing researches, and to provide reference for further research on L.aggregata. MATERIALS AND METHODS By searching various databases for literatures on "Lindera aggregata", "Linderae Radix" and "Lindera strychnifolia", as well as relevant textbooks and digital documents, an overall and critical review of the subject was conducted. RESULTS Through phytochemical studies on different parts of L.aggregata, about 260 compounds were isolated, including flavonoids, alkaloids, terpenes, volatile oils, and other compounds. A large number of in vivo and in vitro studies have shown that L.aggregata has a plethora of pharmacological effects such as anti-cancer, anti-arthritis, anti-bacterial, anti-oxidation, anti-diabetic nephropathy, hepatoprotective, lipid-lowering effect and so on. CONCLUSION While the pharmacological effects of L.aggregata have been confirmed, most studies only use simple in vitro cell lines or animal disease models to evaluate their pharmacological activities. Therefore, future research should be conducted in a more comprehensive clinical manner. Further pharmacological research is also necessary to fully clarify the action mechanism of L.aggregata. It is also interesting to note that L.aggregata is often used to treat frequent urination in ancient times, but its molecular basis and mechanism of action are still unclear, and systematic studies are lacking. In terms of quality control, the source of L.aggregata is single, mostly wild, and the main medicinal part of L.aggregata is the tuber, while the yield of straight root is large. Therefore, further attention should be paid to the rapid propagation technology of L.aggregata and whether straight root can be included in medicinal use. It is also worth thinking whether sulfur-fumigation is necessary for preserving L.aggregata. As vinegar-processing is a common processing method for L. aggregata, the mechanism of such processing method remains to be investigated. In addition, in-depth research on the pharmacokinetics and long-term toxicity of L.aggregata is necessary to ensure its efficacy and safety.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Yuling Deng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China.
| | - Ping Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
3
|
Liu QQ, Xiong LA, Qian JY, Gong TT, Ma LF, Fang L, Zhan ZJ. Rare 7,9'-dinorlignans with neuroprotective activity from the roots of Lindera aggregata (Sims) Kosterm. PHYTOCHEMISTRY 2024; 217:113913. [PMID: 37918621 DOI: 10.1016/j.phytochem.2023.113913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Linderagatins C-F (1-4), the first examples of naturally occurring diaryltetrahydrofuran-type 7,9'-dinorlignans, were characterized from the roots of Lindera aggregata (Sims) Kosterm. The structures of these dinorlignans were elucidated by extensive spectroscopic analysis. The absolute configurations were determined based on calculated and experimental ECD data. A biosynthetic pathway for these dinorlignans was hypothetically proposed. Compounds 2 and 3 showed significant neuroprotective effects on erastin-induced ferroptosis in HT-22 cells with EC50 values of 23.4 and 21.8 μM, respectively.
Collapse
Affiliation(s)
- Qian-Qing Liu
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Lin-An Xiong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Jia-Yu Qian
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Ting-Ting Gong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Lie-Feng Ma
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, PR China.
| | - Zha-Jun Zhan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
4
|
Guo YY, Tian ZH, Ma C, Han YC, Bai D, Jiang Z. Unlocking mild-condition benzene ring contraction using nonheme diiron N-oxygenase. Chem Sci 2023; 14:11907-11913. [PMID: 37920353 PMCID: PMC10619644 DOI: 10.1039/d3sc04660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Benzene ring contractions are useful yet rare reactions that offer a convenient synthetic route to various valuable chemicals. However, the traditional methods of benzene contraction rely on noble-metal catalysts under extreme conditions with poor efficiency and uncontrollable selectivity. Mild-condition contractions of the benzene ring are rarely reported. This study presents a one-step, one-pot benzene ring contraction reaction mediated by an engineered nonheme diiron N-oxygenase. Using various aniline substrates as amine sources, the enzyme causes the phloroglucinol-benzene-ring contraction to afford a series of 4-cyclopentene-1,3-dione structures. A reaction detail study reveals that the nonheme diiron N-oxygenase first oxidizes the aromatic amine to a nitroso intermediate, which then attacks the phloroglucinol anion and causes benzene ring contraction. Besides, we have identified two potent antitumor compounds from the ring-contracted products.
Collapse
Affiliation(s)
- Yuan-Yang Guo
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Ze-Hua Tian
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - ChunHua Ma
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Yu-Chen Han
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - DaChang Bai
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - ZhiYong Jiang
- State Key Laboratory of Antiviral Drugs, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
5
|
Lv Y, Zou Y, Zhang X, Liu B, Peng X, Chu C. A review on the chemical constituents and pharmacological efficacies of Lindera aggregata (Sims) Kosterm. Front Nutr 2023; 9:1071276. [PMID: 36726818 PMCID: PMC9884700 DOI: 10.3389/fnut.2022.1071276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Lindera aggregata (Sims) Kosterm. (L. aggregata), which belongs to the genus Lindera in the family Lauraceae, is widely distributed in Asia and the temperate, tropical regions of North America. Its roots and leaves have been used for thousands of years as traditional Chinese medicine and/or functional food. To further explore its underlying nutritional value, this review provided a comprehensive insight into chemical constituents and pharmacological effects on L. aggregata. The phytochemical investigation of different parts of L. aggregata led to the identification of up to 349 components belonging to sesquiterpenoids, alkaloids, flavonoids, essential oils, and other compounds. Among them, sesquiterpenoids, flavonoids, and alkaloids are assessed as representative active ingredients of L. aggregata. A wide variety of pharmacological effects of L. aggregata, such as anti-hyperlipidemic, anti-tumor, anti-inflammatory, analgesic, and anti-oxidant, have been proved in vitro and in vivo. In summary, this review aims to provide a scientific basis and reference for further research and utilization of L. aggregata and lay the foundation for developing functional foods with potential active ingredients for the prevention and management of related diseases.
Collapse
Affiliation(s)
- Yangbin Lv
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yanfang Zou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Xindan Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Bingrui Liu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Xin Peng
- Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, China,*Correspondence: Xin Peng,
| | - Chu Chu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China,Chu Chu,
| |
Collapse
|
6
|
Effects of Compounds Isolated from Lindera erythrocarpa on Anti-Inflammatory and Anti-Neuroinflammatory Action in BV2 Microglia and RAW264.7 Macrophage. Int J Mol Sci 2022; 23:ijms23137122. [PMID: 35806130 PMCID: PMC9267112 DOI: 10.3390/ijms23137122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Lindera erythrocarpa contains various constituents such as cyclopentenedione-, flavonoid-, and chalcone-type components. In this study, a novel bi-linderone derivative and 17 known compounds were isolated from the leaves of L. erythrocarpa by using various chromatographic methods. The structures of the components were determined from nuclear magnetic resonance and mass spectrometry data. All isolated compounds were tested for anti-inflammatory and anti-neuroinflammatory activities in lipopolysaccharide (LPS)-induced BV2 and RAW264.7 cells. Some of these compounds showed anti-inflammatory effects by inhibiting the nitric oxide (NO) produced by LPS. In particular, linderaspirone A (16), bi-linderone (17) and novel compound demethoxy-bi-linderone (18) showed significant inhibitory effects on the production of prostaglandin E2 (PGE2), tumor necrosis factor-α, and interleukin-6. The three compounds also inhibited the expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2), which are pro-inflammatory proteins, and the activation of nuclear factor κB (NF-κB). Therefore, linderaspirone A (16), bi-linderone (17), and demethoxy-bi-linderone (18) isolated from the leaves of L. erythrocarpa have therapeutic potential in neuroinflammatory diseases.
Collapse
|
7
|
Liu X, Fu J, Shen RS, Wu XJ, Yang J, Bai LP, Jiang ZH, Zhu GY. Linderanoids A-O, dimeric sesquiterpenoids from the roots of Lindera aggregata (Sims) Kosterm. PHYTOCHEMISTRY 2021; 191:112924. [PMID: 34428668 DOI: 10.1016/j.phytochem.2021.112924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/29/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Fifteen undescribed dimeric sesquiterpenoids, linderanoids A-O along with one known lindenane-type sesquiterpenoid dimer, lindenaneolide F, were isolated and identified from the roots of Lindera aggregata. Their structures and absolute configurations were elucidated using spectroscopy and electronic circular dichroism (ECD) analysis. All the isolated compounds were screened for transforming growth factor (TGF)-β inhibitory activity, and the results showed that linderanoid E significantly inhibited the TGF- β induced smad2 phosphorylation at a concentration of 25 μM.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, People's Republic of China
| | - Jing Fu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Rong-Sheng Shen
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Xu-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Ji Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China.
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, People's Republic of China.
| |
Collapse
|
8
|
Kossack R, Breinlinger S, Nguyen T, Moschny J, Straetener J, Berscheid A, Brötz-Oesterhelt H, Enke H, Schirmeister T, Niedermeyer THJ. Nostotrebin 6 Related Cyclopentenediones and δ-Lactones with Broad Activity Spectrum Isolated from the Cultivation Medium of the Cyanobacterium Nostoc sp. CBT1153. JOURNAL OF NATURAL PRODUCTS 2020; 83:392-400. [PMID: 31977209 DOI: 10.1021/acs.jnatprod.9b00885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cyanobacteria are an interesting source of biologically active natural products, especially chemically diverse and potent protease inhibitors. On our search for inhibitors of the trypanosomal cysteine protease rhodesain, we identified the homodimeric cyclopentenedione (CPD) nostotrebin 6 (1) and new related monomeric, dimeric, and higher oligomeric compounds as the active substances in the medium extract of Nostoc sp. CBT1153. The oligomeric compounds are composed of two core monomeric structures, a trisubstituted CPD or a trisubstituted unsaturated δ-lactone. Nostotrebin 6 thus far has been the only known cyanobacterial CPD. It has been found to be active in a broad variety of assays, indicating that it might be a pan-assay interference compound (PAIN). Thus, we compared the antibacterial and cytotoxic activities as well as the rhodesain inhibition of selected compounds. Because a compound with a δ-lactone instead of a CPD core structure was equally active as nostotrebin 6, the bioactivities of these compounds seem to be based on the phenolic substructures rather than the CPD moiety. While the dimers were roughly equally potent, the monomer displayed slightly weaker activity, suggesting that the compounds show unspecific activity depending upon the number of free phenolic hydroxy groups per molecule.
Collapse
Affiliation(s)
- Ronja Kossack
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy , University of Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - Steffen Breinlinger
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy , University of Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - Trang Nguyen
- Department of Microbiology/Biotechnology, Interfaculty Institute for Microbiology and Infection Medicine (IMIT) , University of Tübingen , 72076 Tübingen , Germany
| | - Julia Moschny
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy , University of Halle-Wittenberg , 06120 Halle (Saale) , Germany
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine (IMIT) , University of Tübingen , 72076 Tübingen , Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen , 72076 Tübingen , Germany
| | - Anne Berscheid
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine (IMIT) , University of Tübingen , 72076 Tübingen , Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen , 72076 Tübingen , Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine (IMIT) , University of Tübingen , 72076 Tübingen , Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen , 72076 Tübingen , Germany
| | - Heike Enke
- Cyano Biotech GmbH , 12489 Berlin , Germany
| | - Tanja Schirmeister
- Institute of Pharmacy and Biochemistry , University of Mainz , 55128 Mainz , Germany
| | - Timo H J Niedermeyer
- Department of Pharmaceutical Biology/Pharmacognosy, Institute of Pharmacy , University of Halle-Wittenberg , 06120 Halle (Saale) , Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen , 72076 Tübingen , Germany
| |
Collapse
|
9
|
Liu X, Yang J, Yao XJ, Yang X, Fu J, Bai LP, Liu L, Jiang ZH, Zhu GY. Linderalides A–D, Disesquiterpenoid–Geranylbenzofuranone Conjugates from Lindera aggregata. J Org Chem 2019; 84:8242-8247. [DOI: 10.1021/acs.joc.9b00522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xin Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Ji Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Xing Yang
- Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Jing Fu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| |
Collapse
|