1
|
Mishra KB. 1,5-Disubstituted 1,2,3-triazoles: Molecular scaffolds for medicinal chemistry and biomolecular mimetics. Eur J Med Chem 2025; 291:117614. [PMID: 40239486 DOI: 10.1016/j.ejmech.2025.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Ruthenium (II) catalyzed click chemistry enable the highly efficient and selective synthesis of 1,5-disubstituted 1,2,3-triazoles. This method provides exclusive formation of the desired 1,5-regioisomer. In the past twenty years, these reactions have become a valuable tool in organic synthesis. Similar to 1,4-regioisomer of 1,2,3-triazole, 1,5-disubstituted 1,2,3-triazole functions as biocompatible linkers and biologically active scaffolds. This review focuses on the synthesis and medicinal chemistry significance of these triazoles as versatile building blocks. Notably, they serve as bioisosteres of the cis-amide bond, conferring enhanced stability and mimicking constrained amino acids, making them crucial for peptidomimetic development. Hence, we are discussing their application in the development of peptidomimetics. 1,5-Disbstituted 1,2,3- triazoles mimic cis-amide bond in the peptides, altering their conformation and biological activity. Furthermore, we have discussed its application to create novel bioactive molecules, including mimics of natural products, nucleosides, nucleotides, glycoconjugates, and protein-protein interaction inhibitors. This review highlights their substantial potential in drug discovery, and provides a valuable resource for future research in this field.
Collapse
Affiliation(s)
- Kunj B Mishra
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh-484887, India.
| |
Collapse
|
2
|
Wall BJ, Sharma KK, O’Brien EA, Donovan A, VanVeller B. General Installation of (4 H)-Imidazolone cis-Amide Bioisosteres Along the Peptide Backbone. J Am Chem Soc 2024; 146:11648-11656. [PMID: 38629317 PMCID: PMC11062833 DOI: 10.1021/jacs.3c13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Imidazolones represent an important class of heterocycles present in a wide range of pharmaceuticals, metabolites, and bioactive natural products and serve as the active chromophore in green fluorescent protein. Recently, imidazolones have received attention for their ability to act as a nonaromatic amide bond bioisotere which improves pharmacological properties. Herein, we present a tandem amidine installation and cyclization with an adjacent ester to yield (4H)-imidazolone products. Using amino acid building blocks, we can access the first examples of α-chiral imidazolones that have been previously inaccessible. Additionally, our method is amenable to on-resin installation which can be seamlessly integrated into existing solid-phase peptide synthesis protocols. Finally, we show that peptide imidazolones are potent cis-amide bond surrogates that preorganize linear peptides for head-to-tail macrocyclization. This work represents the first general approach to the backbone and side-chain insertion of imidazolone bioisosteres at various positions in linear and cyclic peptides.
Collapse
Affiliation(s)
- Brendan J. Wall
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | | | | | - Aaron Donovan
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Byerly-Duke J, O'Brien EA, Wall BJ, VanVeller B. Thioimidates provide general access to thioamide, amidine, and imidazolone peptide-bond isosteres. Methods Enzymol 2024; 698:27-55. [PMID: 38886036 DOI: 10.1016/bs.mie.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Thioamides, amidines, and heterocycles are three classes of modifications that can act as peptide-bond isosteres to alter the peptide backbone. Thioimidate protecting groups can address many of the problematic synthetic issues surrounding installation of these groups. Historically, amidines have received little attention in peptides due to limitations in methods to access them. The first robust and general procedure for the introduction of amidines into peptide backbones exploits the utility of thioimidate protecting groups as a means to side-step reactivity that ultimately renders existing methods unsuitable for the installation of amidines along the main-chain of peptides. Further, amidines formed on-resin can be reacted to form (4H)-imidazolone heteorcycles which have recently been shown to act as cis-amide isosteres. General methods for heterocyclic installation capable of geometrically restricting peptide conformation are also under-developed. This work is significant because it describes a generally applicable and divergent approach to access unexplored peptide designs and architectures.
Collapse
Affiliation(s)
- Jacob Byerly-Duke
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Emily A O'Brien
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Brendan J Wall
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, IA, United States.
| |
Collapse
|
4
|
Hattori T, Yamamoto H. Trimethylaluminum-mediated one-pot peptide elongation. Chem Sci 2023; 14:5795-5801. [PMID: 37265739 PMCID: PMC10231425 DOI: 10.1039/d3sc00208j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Efficient and straightforward peptide bond formation of N-, and C-terminal unprotected amino acids was successfully achieved by using trimethylaluminum. The coupling reaction was accomplished by pre-reaction of N-, and C-terminal unprotected amino acids and trimethylaluminum to form a five-membered ring that smoothly reacted with nucleophilic amino acid esters. This simple and highly efficient reaction system allows one-pot tripeptide synthesis without the need for expensive coupling reagents. Furthermore, peptide bond formation can be effectively achieved even for amino acids with bulky substituents at the side chain to afford the corresponding tripeptides in high yields in a one-pot manner. In addition, the reaction can be applied for further peptide elongation by the subsequent addition of amino acids and trimethylaluminum. We anticipate that this cost-effective, straightforward, and efficient protocol will be useful for the synthesis of a wide variety of peptides.
Collapse
Affiliation(s)
- Tomohiro Hattori
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Hisashi Yamamoto
- Peptide Research Center, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| |
Collapse
|
5
|
Krošl I, Košćak M, Ribičić K, Žinić B, Majhen D, Božinović K, Piantanida I. Impact of the Histidine-Triazole and Tryptophan-Pyrene Exchange in the WHW Peptide: Cu(II) Binding, DNA/RNA Interactions and Bioactivity. Int J Mol Sci 2022; 23:ijms23137006. [PMID: 35806009 PMCID: PMC9266797 DOI: 10.3390/ijms23137006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
In three novel peptidoids based on the tryptophan—histidine—tryptophan (WHW) peptide, the central histidine was replaced by Ala-(triazole), and two derivatives also had one tryptophan replaced with pyrene-alkyls of different lengths and flexibility. Pyrene analogues show strong fluorescence at 480–500 nm, attributed to intramolecular exciplex formation with tryptophan. All three peptidoids bind Cu2+ cation in water with strong affinity, with Trp- Ala-(triazole)-Trp binding comparably to the parent WHW, and the pyrene analogues even stronger, demonstrating that replacement of histidine with triazole in peptides does not hamper Cu2+ coordination. The studied peptidoids strongly bind to ds-DNA and ds-RNA, whereby their complexes with Cu2+ exhibit distinctively different interactions in comparison to metal-free analogues, particularly in the stabilization of ds-DNA against thermal denaturation. The pyrene peptidoids efficiently enter living cells with no apparent cytotoxic effect, whereby their red-shifted emission compared to the parent pyrene allows intracellular confocal microscopy imaging, showing accumulation in cytoplasmic organelles. However, irradiation with 350 nm light resulted in evident antiproliferative effect on cells treated with micromolar concentrations of the pyrene analogues, presumably attributed to pyrene-induced production of singlet oxygen and consecutive cellular damage.
Collapse
Affiliation(s)
- Ivona Krošl
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.K.); (M.K.); (K.R.); (B.Ž.)
| | - Marta Košćak
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.K.); (M.K.); (K.R.); (B.Ž.)
| | - Karla Ribičić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.K.); (M.K.); (K.R.); (B.Ž.)
| | - Biserka Žinić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.K.); (M.K.); (K.R.); (B.Ž.)
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (D.M.); (K.B.)
| | - Ksenija Božinović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (D.M.); (K.B.)
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (I.K.); (M.K.); (K.R.); (B.Ž.)
- Correspondence: ; Tel.: +385-1-4571-326
| |
Collapse
|
6
|
Yan H, Chen F. Recent Progress in Solid‐Phase Total Synthesis of Naturally Occurring Small Peptides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Hong Yan
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 People's Republic of China
| | - Fen‐Er Chen
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 People's Republic of China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules Department of Chemistry Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs Fudan University 220 Handan Road Shanghai 200433 People's Republic of China
| |
Collapse
|
7
|
An overview on the two recent decades’ study of peptides synthesis and biological activities in Iran. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02312-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Fluorescent Analogues of FRH Peptide: Cu(II) Binding and Interactions with ds-DNA/RNA. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Four novel peptidoids, derived from the Phe-Arg-His (FRH) peptide motif, were prepared by replacing the histidine heterocycle with triazole and consequent triazole-fluorophore (coumarin) extension and also replacing arginine with less voluminous lysine. So the constructed Phe-Lys-Ala(triazole) (FKA(triazole)) peptidoids bind Cu2+ cations in water with a strong, nanomolar affinity comparable to the parent FRH and its known analogs, demonstrating that triazole can coordinate copper similarly as histidine. Moreover, even short KA(triazole)coumarin showed submicromolar affinity to Cu2+. Only FKA(triazole)coumarin with free amino groups and its shorter analog KA(triazole)coumarin showed strong induced CD spectra upon Cu2+ cation binding. Thus, KA(triazole)coumarin can be considered as the shortest peptidoid sequence with highly sensitive fluorescent and chiral CD response for Cu2+ cation, encouraging further studies with other metal cations. The FKA(triazole) coumarin peptidoids show biorelevant, 10 µM affinity to ds-DNA and ds-RNA, binding within DNA/RNA grooves. Intriguingly, only peptidoid complexes with Cu2+ strongly stabilize ds-DNA and ds-RNA against thermal denaturation, suggesting significant interactions of Cu2+ cation within the DNA/RNA binding site.
Collapse
|
9
|
Liu ZC, Yue WJ, Yin L. Copper(I)-Catalyzed Asymmetric Synthesis of Unnatural α-Amino Acid Derivatives and Related Peptides Containing γ-(aza)Aryls. J Org Chem 2021; 87:399-405. [PMID: 34908422 DOI: 10.1021/acs.joc.1c02426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chiral α-amino acids are indispensable compounds in organic chemistry, biochemistry, and medicinal chemistry. Herein, by means of copper(I)-catalyzed asymmetric conjugate addition of derivatives of glycine, serine, cysteine, and β-amino-alanine to electron-deficient vinyl(aza)arenes, an array of novel unnatural chiral α-amino acid derivatives bearing a γ-(aza)aryl is prepared in moderate to high yields with high enantioselectivity. Various azaarenes, such as pyrimidine, 1,3,5-triazine, pyridine, pyridine-N-oxide, quinoline, quinoxaline, purine, benzo[d]imidazole, benzothiazole, and 1,2,4-oxadiazole, are well tolerated. Moreover, the electrophiles are nicely extended to (Z)/(E) mixtures of electron-deficient butadienylpyridine and benzene, which are transformed to the corresponding chiral α-amino acid derivatives in high (E)/(Z) ratio and high enantioselectivity. More importantly, the present methodology is successfully applied in the catalytic asymmetric functionalization of Schiff bases derived from peptides, which finally afforded a new chiral tripeptide bearing two electron-deficient azaaryls and one electron-deficient aryl in high total yield with high diastereo- and excellent enantioselectivities.
Collapse
Affiliation(s)
- Zong-Ci Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen-Jun Yue
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
10
|
Dahiya R, Dahiya S, Chennupati SV, Davis V, Sahadeo V, Patel JK. Toward the Synthesis of a Heterocyclic Analogue of Natural Cyclooligopeptide with Improved Bio-Properties. Curr Org Synth 2021; 19:267-278. [PMID: 34636301 DOI: 10.2174/1570179418666211005141811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/25/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
AIMS The present investigation is targeted toward the synthesis of a novel analogue of a natural peptide of marine origin. <P> Background: Marine sponges are enriched with bioactive secondary metabolites especially circular peptides. Heterocycles are established organic compounds with potential biological value. Taking into consideration the bio-properties of heterocycles and marine sponge-derived natural peptides, an effort was made for the synthesis of a heterocyclic analogue of a natural cyclopeptide. <P> Objective: A heterocyclic analogue of a sponge-derived proline-containing cyclic peptide, rolloamide A, was synthesized by interaction of Boc-protected L-histidinyl-L-prolyl-L-valine and L-prolyl-L-leucyl-L-prolyl-L-isoleucine methyl ester and compared with synthetic rolloamide A with bioactivity against bacteria, fungi, and earthworms. <P> Methods: The synthesis of cycloheptapeptide was accomplished employing the liquid phase method. The larger peptide segment was prepared by interaction of Boc-protected L-prolyl-L-leucine with L-prolyl-L-isoleucine methyl ester. Similarly, the tripeptide unit was synthesized from Boc-protected L-histidinyl-L-proline with L-valine ester. The linear heptapeptide segment (7) was cyclized by utilizing pentafluorophenyl (pfp) ester, and the structure was elucidated by elemental and spectral (IR, 1H/13C NMR, MS) analysis. The peptide was also screened for diverse bioactivities such as antibacterial, antifungal, and potential against earthworms and cytotoxicity. <P> Results: The novel cyclooligopeptide was synthesized with 84% yield by making use of carbodiimides. The synthesized cyclopeptide exhibited significant cytotoxicity against two cell lines. In addition, promising antifungal and antihelmintic properties were observed for newly synthesized heterocyclic peptide derivative (8) against dermatophytes and three earthworm species at 6 µg/mL and 2 mg/mL, respectively. <P> Conclusion: Solution-phase technique employing carbodiimide chemistry established to be promising for synthesizing the cycloheptapeptide derivative (8), and C5H5N was proved a better base for heptapeptide circling, when compared to N-methylmorpholine and triethylamine.
Collapse
Affiliation(s)
- Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago. West Indies
| | - Sunita Dahiya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan. United States
| | - Suresh V Chennupati
- Department of Pharmacy, College of Medical and Health Sciences, Wollega University, Nekemte, Federal Democratic. Ethiopia
| | - Vernon Davis
- School of Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago. West Indies
| | - Vijaya Sahadeo
- School of Medicine, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad and Tobago. West Indies
| | - Jayvadan K Patel
- Department of Pharmaceutics, Nootan Pharmacy College, Faculty of Pharmacy, Sankalchand Patel University, Visnagar, Mehsana, Gujarat. India
| |
Collapse
|
11
|
Boto A, González CC, Hernández D, Romero-Estudillo I, Saavedra CJ. Site-selective modification of peptide backbones. Org Chem Front 2021. [DOI: 10.1039/d1qo00892g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exciting developments in the site-selective modification of peptide backbones are allowing an outstanding fine-tuning of peptide conformation, folding ability, and physico-chemical and biological properties.
Collapse
Affiliation(s)
- Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Concepción C. González
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Dácil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Iván Romero-Estudillo
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico
- Catedrático CONACYT-CIQ-UAEM, Mexico
| | - Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
- Programa Agustín de Betancourt, Universidad de la Laguna, 38200 Tenerife, Spain
| |
Collapse
|
12
|
Apte CN, Diaz DB, Adrianov T, Yudin AK. Grafting Bis(heteroaryl) Motifs into Ring Structures. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chirag N. Apte
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George Street M5S3H6 Toronto ON Canada
| | - Diego B. Diaz
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George Street M5S3H6 Toronto ON Canada
| | - Timur Adrianov
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George Street M5S3H6 Toronto ON Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George Street M5S3H6 Toronto ON Canada
| |
Collapse
|
13
|
Motevalli S, Nguyen MT, Tan J, Fuller AA. Diverse N-Substituted Azole-Containing Amino Acids as Building Blocks for Cyclopeptides. ACS OMEGA 2020; 5:1214-1220. [PMID: 31984279 PMCID: PMC6977196 DOI: 10.1021/acsomega.9b03682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
The preparation of 16 oxazole- or thiazole-containing amino esters bearing a wide array of N-substitution is reported. These were accessed in 40-92% yield via an AgClO4-promoted substitution reaction between a primary amine and a chloromethyl-functionalized thiazole or oxazole. These new synthetic building blocks will be useful for the preparation of new cyclopeptide analogues bearing heterocyclic backbone modifications. Four macrocyclic N-substituted oligoamides that include thiazole or oxazole heterocycles were obtained, following cyclooligomerization reactions of azole-modified N-substituted amino acids.
Collapse
Affiliation(s)
- Somayeh Motevalli
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Michelle T. Nguyen
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Jiacheng Tan
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Amelia A. Fuller
- Department of Chemistry & Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| |
Collapse
|