1
|
Lei M, Ge F, Gao X, Shi Z, Zheng H. A Water-Stable Tb-MOF As a Rapid, Accurate, and Highly Sensitive Ratiometric Luminescent Sensor for the Discriminative Sensing of Antibiotics and D 2O in H 2O. Inorg Chem 2021; 60:10513-10521. [PMID: 34170146 DOI: 10.1021/acs.inorgchem.1c01145] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The design and development of self-calibrating ratiometric luminescent sensors for the fast, accurate, and sensitive discrimination and determination of pollutants in wastewater is highly desirable for public and environmental health. Herein, a 3D porous Tb(III)-based metal-organic framework (MOF), {[Tb(HL)(H2O)2]·x(solv)}n (1), was facilely synthesized using a urea-functionalized tetracarboxylate ligand, 5,5'-(((1,4-phenylenebis(azanediyl))bis(carbonyl))bis(azanediyl))diisophthalic acid (H4L). The activated framework showed a good water stability in both aqueous solutions at a wide pH range of 2-14 and simulated antibiotic wastewaters. Interestingly, this Tb-MOF exhibited dual luminescence owing to the partial energy transfer from the antenna H4L to Tb3+. More importantly, activated 1 (1a) that was dispersed in water showed a fast, accurate, and highly sensitive discrimination ability toward antibiotics with a good recyclability, discriminating three different classes of antibiotics from each other via the quenching or enhancement of the luminescence and tuning the emission intensity ratio between the H4L ligand and the Tb3+ center for the first time. Simultaneously, 1a is a ratiometric luminescent sensor for the rapid, accurate, and quantitative discrimination of D2O from H2O. Furthermore, this complex was successfully used for the effective determination of antibiotics and D2O in real water samples. This work indicates that 1a represents the first ever MOF material for the discriminative sensing of antibiotics and D2O in H2O and promotes the practical application of Ln-MOF-based ratiometric luminescent sensors in monitoring water quality and avoiding any major leak situation.
Collapse
Affiliation(s)
- Mingyuan Lei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Fayuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Xiangjing Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhiqiang Shi
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an 271021, P. R. China
| | - Hegen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
2
|
Chi J, Zhong B, Li Y, Shao P, Liu G, Gao Q, Chen B. Uncoordinated‐substituents‐induced zinc(II) coordination polymers exhibiting multifunctional fluorescent sensing activity for cations, anions and organochlorine pesticides. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Chi
- College of Chemistry and Materials Engineering Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell Bohai University Jinzhou 121013 P. R. China
| | - Baoqi Zhong
- College of Chemistry and Materials Engineering Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell Bohai University Jinzhou 121013 P. R. China
| | - Yan Li
- College of Chemistry and Materials Engineering Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell Bohai University Jinzhou 121013 P. R. China
| | - Pengpeng Shao
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Guocheng Liu
- College of Chemistry and Materials Engineering Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell Bohai University Jinzhou 121013 P. R. China
- Key Laboratory of Cluster Science Ministry of Education Beijing Key Laboratory of Photoelectronic/Electrophotonic Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Qiang Gao
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang P.R. China 212003
| | - Baokuan Chen
- College of Chemistry Chemical Engineering and Environmental Engineering Liaoning Shihua University Fushun 113001 P. R. China
| |
Collapse
|
3
|
Chi J, Mu Y, Li Y, Shao P, Liu G, Cai B, Xu N, Chen Y. Polytorsional-amide/carboxylates-directed Cd( ii) coordination polymers exhibiting multi-functional sensing behaviors. RSC Adv 2021; 11:31756-31765. [PMID: 35496860 PMCID: PMC9041708 DOI: 10.1039/d1ra04411g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/19/2021] [Indexed: 12/11/2022] Open
Abstract
By rational assembly of polytorsional-amide [N,N′-bis(4-methylenepyridin-4-yl)-1,4-naphthalene dicarboxamide (L)] and polytorsional-carboxylates [H2ADI = adipic acid, H2PIM = pimelic acid, H2SUB = suberic acid], three new Cd-based coordination polymers (CPs) C30H30CdN4O7 (1), C31H32CdN4O7 (2) and C31.03H30.55CdCl0.24N4O5.52 (3) were successfully synthesized. CPs 1–2 and 3 are 2D networks and a 3D framework, which all display 3,5-connected topologies with different structural details. The effects of carboxylates with different carbon chains on the structure of the complexes were studied. Fluorescence experiments show that CPs 1–3 have good multi-functional sensing ability for metal cations (Fe3+), anions (MnO4−, CrO42−, Cr2O72−) and organochlorine pesticides (2,6-dichloro-4-nitroamine) with good anti-interference and recyclable characteristics. The possible sensing mechanism is also investigated in detail. Three (3,5)-connected Cd(ii) coordination polymers induced by polytorsional-amide/carboxylates exhibiting controllable multifunctional fluorescent sensing activities.![]()
Collapse
Affiliation(s)
- Jie Chi
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Yajun Mu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Yan Li
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Pengpeng Shao
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Guocheng Liu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bin Cai
- School of Chemistry and Chemical Engineerng, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Na Xu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Yongqiang Chen
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi, 030619, P. R. China
| |
Collapse
|