1
|
Manea YK, Qashqoosh MTA, Rezakazemi M. In Vitro Hemoglobin Binding and Molecular Docking of Synthesized Chitosan-Based Drug-Carrying Nanocomposite for Ciprofloxacin-HCl Drug Delivery System. ACS OMEGA 2024; 9:6339-6354. [PMID: 38371765 PMCID: PMC10870405 DOI: 10.1021/acsomega.3c04632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/20/2024]
Abstract
Understanding the intermolecular interactions between antibiotic drugs and hemoglobin is crucial in biological systems. The current study aimed to investigate the preparation of chitosan/polysorbate-80/tripolyphosphate (CS-PS/TPP) nanocomposite as a potential drug carrier for Ciprofloxacin-HCl drug (CFX), intended for controlled release formulation and further used to interact with bovine hemoglobin. Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis-differential thermal analysis (TGA-DTA), scanning electron microscopy (SEM), dynamic light scattering (DLS), and X-ray diffraction analyses were used to characterize the CS-PS/TPP nanocomposite and its CFX-loaded nanocomposite. The second series of biophysical properties were performed on the Ciprofloxacin-loaded CS-PS/TPP (NCFX) for interaction with bovine hemoglobin (BHb). The interactions of (CFX and NCFX) with redox protein hemoglobin were investigated for the first time through a series of in vitro experimental techniques to provide comprehensive knowledge of the drug-protein binding interactions. Additionally, the effect of inclusion of PS-80 on the CFX-BHb interaction was also studied at different concentrations using fluorescence spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and circular dichroism (CD) under physiological conditions. The binding process of CFX and NCFX was spontaneous, and the fluorescence of BHb was quenched due to the static mechanism formation of the (CFX/BHb) and (NCFX/BHb) complexes. Thermodynamic parameters ΔG, ΔH, and ΔS at various temperatures indicate that the hydrogen bonding and van der Waals forces play a major role in the CFX-BHb association.
Collapse
Affiliation(s)
| | - Mohsen T. A. Qashqoosh
- Department
of Chemistry, University of Aden, P.O. Box 6312 Aden, Yemen
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mashallah Rezakazemi
- Faculty
of Chemical and Materials Engineering, Shahrood
University of Technology, P.O. Box 3619995161 Shahrood, Iran
| |
Collapse
|
2
|
Romero JF, Herziger S, Cherri M, Dimde M, Achazi K, Mohammadifar E, Haag R. Dendritic Glycerol-Cholesterol Amphiphiles as Drug Delivery Systems: A Comparison between Monomeric and Polymeric Structures. Pharmaceutics 2023; 15:2452. [PMID: 37896212 PMCID: PMC10610414 DOI: 10.3390/pharmaceutics15102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The application of micelles as drug delivery systems has gained a great deal of attention as a means to overcome the current several drawbacks present in conventional cancer treatments. In this work, we highlight the comparison of polymeric and monomeric amphiphilic systems with a similar hydrophilic-lipophilic balance (HLB) in terms of their biocompatibility, aggregation behavior in aqueous solution, and potential in solubilizing hydrophobic compounds. The polymeric system consists of non-ionic polymeric amphiphiles synthesized via sequential RAFT polymerization of polyglycerol first-generation [G1] dendron methacrylate and cholesterol methacrylate to obtain poly(G1-polyglycerol dendron methacrylate)-block-poly(cholesterol methacrylate) (pG1MA-b-pCMA). The monomeric system is a polyglycerol second-generation [G2] dendron end-capped to a cholesterol unit. Both amphiphiles form spherical micellar aggregations in aqueous solution, with differences in size and the morphology in which hydrophobic molecules can be encapsulated. The polymeric and monomeric micelles showed a low critical micelle concentration (CMC) of 0.2 and 17 μg/mL, respectively. The results of our cytotoxicity assays showed that the polymeric system has significantly higher cell viability compared to that of the monomeric amphiphiles. The polymeric micelles were implemented as drug delivery systems by encapsulation of the hydrophobic small molecule doxorubicin, achieving a loading capacity of 4%. In summary, the results of this study reveal that using cholesterol as a building block for polymer synthesis is a promising method of preparation for efficient drug delivery systems while improving the cell viability of monomeric cholesterol.
Collapse
Affiliation(s)
| | | | | | | | | | - Ehsan Mohammadifar
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany; (J.F.R.); (S.H.); (M.C.); (M.D.); (K.A.)
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany; (J.F.R.); (S.H.); (M.C.); (M.D.); (K.A.)
| |
Collapse
|
3
|
Verma D, Rashmi, Achazi K, Singh A, Schade B, Haag R, Sharma SK. Synthesis of
d
‐
glucitol
based Gemini amphiphilic nanotransporters. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Diksha Verma
- Department of Chemistry University of Delhi Delhi India
| | - Rashmi
- Institut für Chemie und Biochemie Freie Universität Berlin Berlin Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie Freie Universität Berlin Berlin Germany
| | - Abhishek Singh
- Institut für Chemie und Biochemie Freie Universität Berlin Berlin Germany
| | - Boris Schade
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie and Core Facility BioSupraMol, Institut für Chemie und Biochemie Freie Universität Berlin Berlin Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie Freie Universität Berlin Berlin Germany
| | | |
Collapse
|
4
|
Rashmi, Hasheminejad H, Herziger S, Mirzaalipour A, Singh AK, Netz RR, Böttcher C, Makki H, Sharma SK, Haag R. Supramolecular Engineering of Alkylated, Fluorinated, and Mixed Amphiphiles. Macromol Rapid Commun 2022; 43:e2100914. [PMID: 35239224 DOI: 10.1002/marc.202100914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/08/2022] [Indexed: 11/11/2022]
Abstract
The rational design of perfluorinated amphiphiles to control the supramolecular aggregation in aqueous medium is still a key challenge for the engineering of supramolecular architectures. Here we present the synthesis and physical properties of six novel non-ionic amphiphiles. We also studied the effect of mixed alkylated and perfluorinated segments in a single amphiphile and compared it with only alkylated and perfluorinated units. To explore their morphological behavior in aqueous medium, we used dynamic light scattering (DLS) and cryo-TEM/EM measurements. We further confirmed their assembly mechanisms with theoretical investigations, using the Martini model to perform large-scale coarse-grained molecular dynamics simulations. These novel synthesized amphiphiles offer a greater and more systematic understanding of how perfluorinated systems assemble in aqueous medium and suggest new directions for rational designing of new amphiphilic systems and interpreting their assembly process. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rashmi
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.,Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Hooman Hasheminejad
- Department of Polymer and Color Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Svenja Herziger
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, Berlin, 14195, Germany
| | - Alireza Mirzaalipour
- Department of Polymer and Color Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Abhishek K Singh
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| | - Roland R Netz
- Freie Universität Berlin, Fachbereich Physik, Berlin, 14195, Germany
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, Berlin, 14195, Germany
| | - Hesam Makki
- Department of Polymer and Color Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi, 110 007, India
| | - Rainer Haag
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustraße 3, Berlin, 14195, Germany
| |
Collapse
|
5
|
Hughes JR, Miller AS, Wallace CE, Vemuri GN, Iovine PM. Biomedically Relevant Applications of Bolaamphiphiles and Bolaamphiphile-Containing Materials. Front Chem 2021; 8:604151. [PMID: 33553103 PMCID: PMC7855593 DOI: 10.3389/fchem.2020.604151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Bolaamphiphiles (BAs) are structurally segmented molecules with rich assembly characteristics and diverse physical properties. Interest in BAs as standalone active agents or as constituents of more complex therapeutic formulations has increased substantially in recent years. The preorganized amphiphilicity of BAs allows for a range of biological activities including applications that rely on multivalency. This review summarizes BA-related research in biomedically relevant areas. In particular, we review BA-related literature in four areas: gene delivery, antimicrobial materials, hydrogels, and prodrugs. We also discuss several distinguishing characteristics of BAs that impact their utility as biomedically relevant compounds.
Collapse
Affiliation(s)
| | | | | | | | - Peter M. Iovine
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA, United States
| |
Collapse
|
6
|
Wagalgave SM, Aljabri MD, Bhamidipati K, Shejule DA, Nadimetla DN, Al Kobaisi M, Puvvada N, Bhosale SV, Bhosale SV. Characteristics of the pH-regulated aggregation-induced enhanced emission (AIEE) and nanostructure orchestrate via self-assembly of naphthalenediimide–tartaric acid bola-amphiphile: role in cellular uptake. NEW J CHEM 2021. [DOI: 10.1039/d0nj05845a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A naphthalene diimide–tartaric acid conjugate was successfully synthesized, and the influence of tartaric acid on the self-assembly of the NDI–TA scaffold was explored.
Collapse
Affiliation(s)
- Sopan M. Wagalgave
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
| | - Mahmood D. Aljabri
- School of Science, RMIT University, GPO Box 2476, Melbourne
- Victoria
- Australia
| | - Keerti Bhamidipati
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
- Applied Biology Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
| | - Deepak A. Shejule
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Dinesh N. Nadimetla
- Applied Biology Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Mohammad Al Kobaisi
- School of Science, RMIT University, GPO Box 2476, Melbourne
- Victoria
- Australia
| | - Nagaprasad Puvvada
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
- Applied Biology Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
| | - Sidhanath V. Bhosale
- Polymers and Functional Materials Division CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
| | | |
Collapse
|
7
|
Parshad B, Prasad S, Bhatia S, Mittal A, Pan Y, Mishra PK, Sharma SK, Fruk L. Non-ionic small amphiphile based nanostructures for biomedical applications. RSC Adv 2020; 10:42098-42115. [PMID: 35516774 PMCID: PMC9058284 DOI: 10.1039/d0ra08092f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022] Open
Abstract
Self-assembly of non-ionic amphiphilic architectures into nanostructures with defined size, shape and morphology has garnered substantial momentum in the recent years due to their extensive applications in biomedicine. The manifestation of a wide range of morphologies such as micelles, vesicles, fibers, tubes, and toroids is thought to be related to the structure of amphiphilic architectures, in particular, the choice of the hydrophilic and hydrophobic parts. In this review, we look at different types of non-ionic small amphiphilic architectures and the factors that influence their self-assembly into various nanostructures in aqueous medium. In particular, we focus on the explored structural parameters that guide the formation of various nanostructures, and the ways these structures can be used in applications ranging from drug delivery to cell imaging.
Collapse
Affiliation(s)
- Badri Parshad
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge CB3 0AS UK
| | - Suchita Prasad
- Department of Chemistry, University of Delhi Delhi 110 007 India
| | - Sumati Bhatia
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | - Ayushi Mittal
- Department of Chemistry, University of Delhi Delhi 110 007 India
| | - Yuanwei Pan
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| | | | - Sunil K Sharma
- Department of Chemistry, University of Delhi Delhi 110 007 India
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Cambridge CB3 0AS UK
| |
Collapse
|
8
|
Rashmi, Zabihi F, Singh AK, Achazi K, Schade B, Hedtrich S, Haag R, Sharma SK. Non-ionic PEG-oligoglycerol dendron conjugated nano-carriers for dermal drug delivery. Int J Pharm 2020; 580:119212. [PMID: 32165226 DOI: 10.1016/j.ijpharm.2020.119212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/22/2020] [Accepted: 03/07/2020] [Indexed: 01/03/2023]
Abstract
A new class of non-ionic amphiphiles have been synthesised using a combination of polyethylene glycol (PEG) and oligoglycerol dendrons as hydrophilic units and an alkoxy aryl moiety as hydrophobic unit. The resulting amphiphiles were found to aggregate in aqueous medium. Their aggregation behaviour was studied using dynamic light scattering (DLS), fluorescence spectroscopy, and cryogenic electron microscopy (cryo-TEM). The inner hydrophobic core of these aggregates in aqueous medium is capable of encapsulating lipophilic guest molecules. The encapsulation behaviour was studied using Nile red as a hydrophobic dye as well as Curcumin and Dexamethasone as hydrophobic drug candidates. Furthermore, for biological evaluation, cytotoxicity and cellular uptake was studied using different cancer cell lines. The biomedical application of synthesised amphiphiles was further investigated for dermal drug delivery on excised human skin using Nile red encapsulated in the nanocarrier. The release profile of drug/dye encapsulated amphiphiles was studied under physiochemical conditions in the presence of immobilized lipase Novozym 435.
Collapse
Affiliation(s)
- Rashmi
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Fatemeh Zabihi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Abhishek K Singh
- Department of Chemistry, University of Delhi, Delhi 110 007, India; Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Boris Schade
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, 14195 Berlin, Germany
| | - Sarah Hedtrich
- University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, V6T1Z3 Vancouver, Canada; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
9
|
Mittal A, Singh AK, Kumar A, Parmanand, Achazi K, Haag R, Sharma SK. Fabrication of oligo‐glycerol based hydrolase responsive amphiphilic nanocarriers. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ayushi Mittal
- Department of ChemistryUniversity of Delhi Delhi India
| | - Abhishek K. Singh
- Institut für Chemie und BiochemieFreie Universität Berlin Berlin Germany
| | - Anoop Kumar
- Department of ChemistryUniversity of Delhi Delhi India
| | - Parmanand
- Department of ChemistryUniversity of Delhi Delhi India
| | - Katharina Achazi
- Institut für Chemie und BiochemieFreie Universität Berlin Berlin Germany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität Berlin Berlin Germany
| | | |
Collapse
|
10
|
Rashmi, Singh AK, Achazi K, Ehrmann S, Böttcher C, Haag R, Sharma SK. Stimuli-responsive non-ionic Gemini amphiphiles for drug delivery applications. Polym Chem 2020. [DOI: 10.1039/d0py01040e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This paper shows the synthesis of stimuli responsive Gemini amphiphiles sensitive to Glutathione and hydrolase.
Collapse
Affiliation(s)
- Rashmi
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| | - Abhishek K. Singh
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Svenja Ehrmann
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Forschungszentrum für Elektronenmikroskopie
| | - Christoph Böttcher
- Forschungszentrum für Elektronenmikroskopie
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Sunil K. Sharma
- Department of Chemistry
- University of Delhi
- Delhi 110 007
- India
| |
Collapse
|