1
|
Dutta B, Waghmare A, Das SK, Bhargava Y, Kumar A, Debnath AK, Barick KC, Hassan PA. Fluorescence tunable carbon dots for in vitro nuclear dynamics and gastrointestinal imaging in live zebrafish and their in vivo toxicity evaluation by cardio-craniofacial disfunction assessment. NANOSCALE 2025; 17:4502-4523. [PMID: 39801425 DOI: 10.1039/d4nr04077e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds. These challenges underscore the need for safer, more effective diagnostic and therapeutic solutions. In these aspects, we have developed highly photostable, biocompatible, water-dispersible carbon dots (TNCDs) with an average size of 5.5 nm using tartaric acid and ethylenediamine via a hydrothermal route. The synthesized TNCDs have shown bright blue fluorescence under the irradiation of UV-light at an excitation wavelength of 365 nm. They exhibit a quantum yield (QY) of 25.1% with maximum emission at 390 nm. A nice tri-exponential fitting of the decay curve with characteristic lifetimes of 1.52 ns, 3.05 ns and 6.11 ns for TNCDs was obtained. In vitro studies demonstrated that TNCDs have high biocompatibility (20 μg ml-1) with almost 100% cell viability and excellent nucleus targeting and staining capabilities with low background interference (with 10-12 times enhancement in fluorescence intensity). Additionally, if tagged with photosensitizers or radionuclides, TNCDs can serve as therapeutic agents in photodynamic therapy against cancer cells. Importantly, TNCDs exhibited negligible toxicity in developing zebrafish even at high concentrations (up to 400 mg L-1) as investigated by cardio and craniofacial disfunction assessment. Live organism imaging revealed that TNCDs produced aggregation-induced strong and specific green fluorescence in the gut of zebrafish larvae even at low concentrations, indicating their potential for nucleus staining and gut-specific optical imaging (at 50 mg L-1). Thus, our TNCDs represent a robust nanoplatform for cellular and whole-organism fluorescence imaging, offering both diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, India
| | - Ashwini Waghmare
- Molecular Engineering and Imaging Lab, Department of Microbiology, Dr Harisingh Gour University (A Central University), Sagar-470003, M.P., India
| | - Sourav Kumar Das
- Radiation Biology &Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Yogesh Bhargava
- Molecular Engineering and Imaging Lab, Department of Microbiology, Dr Harisingh Gour University (A Central University), Sagar-470003, M.P., India
| | - Amit Kumar
- Radiation Biology &Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - A K Debnath
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, India
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, India
| |
Collapse
|
2
|
Asil SM, Narayan M. Molecular interactions between gelatin-derived carbon quantum dots and Apo-myoglobin: Implications for carbon nanomaterial frameworks. Int J Biol Macromol 2024; 264:130416. [PMID: 38428776 PMCID: PMC11290343 DOI: 10.1016/j.ijbiomac.2024.130416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Carbon nanomaterials (CNMs), including carbon quantum dots (CQDs), have found widespread use in biomedical research due to their low toxicity, chemical tunability, and tailored applications. Yet, there exists a gap in our understanding of the molecular interactions between biomacromolecules and these novel carbon-centered platforms. Using gelatin-derived CQDs as a model CNM, we have examined the impact of this exemplar nanomaterial on apo-myoglobin (apo-Mb), an oxygen-storage protein. Intrinsic fluorescence measurements revealed that the CQDs induced conformational changes in the tertiary structure of native, partially unfolded, and unfolded states of apo-Mb. Titration with CQDs also resulted in significant changes in the secondary structural elements in both native (holo) and apo-Mb, as evidenced by the circular dichroism (CD) analyses. These changes suggested a transition from isolated helices to coiled-coils during the loss of the helical structure of the apo-protein. Infra-red spectroscopic data further underscored the interactions between the CQDs and the amide backbone of apo-myoglobin. Importantly, the CQDs-driven structural perturbations resulted in compromised heme binding to apo-myoglobin and, therefore, potentially can attenuate oxygen storage and diffusion. However, a cytotoxicity assay demonstrated the continued viability of neuroblastoma cells exposed to these carbon nanomaterials. These results, for the first time, provide a molecular roadmap of the interplay between carbon-based nanomaterial frameworks and biomacromolecules.
Collapse
Affiliation(s)
- Shima Masoudi Asil
- The Environmental Science & Engineering Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mahesh Narayan
- The Department of Chemistry & Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
3
|
Amino benzene dicarboxylic acid-derived luminescent nitrogen-doped Carbon- quantum Dots/anti-TNT antibodies conjugate for detection of nitroaromatic contaminant in water: A comparative analysis of chemo-Bio-sensing affinity. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Wang K, Wang X, Liu X, Li E, Zhao R, Yang S. Facile synthesis of dual emission carbon dots for the ratiometric fluorescent detection of 2,4,6-trinitrophenol and cell imaging. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Islam N, Saikia BK. An overview on atmospheric carbonaceous particulate matter into carbon nanomaterials: A new approach for air pollution mitigation. CHEMOSPHERE 2022; 303:135027. [PMID: 35623423 DOI: 10.1016/j.chemosphere.2022.135027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Air pollutants consisting of atmospheric particulate matter (PM) poses a major threat to the environment and human health. However, due to their carbonaceous nature, these atmospheric PM can also be used as a precursor for fabrication of high-valued carbon nanomaterials (CNMs) leading to waste to wealth as well as mitigation of air pollution. Over the few years, various results have been reported on different types of physical and chemical methods for the synthesis of CNMs from atmospheric particulate matter with the help of top down and bottom up methods; however, there is a lack of review on these innovative processes and outcome in order to assess their feasibility and suitability for further investigation. This review critically assesses the synthesis, identification, and characterization of different types of CNMs derived from the atmospheric PM. The fascinating fluorescence properties along with the novel multifarious applications of such PM-derived CNMs are also extensively discussed in this review work. This unique review will certainly help to make a new avenue for air pollution mitigation through conversion of PMs in to value added nanomaterials (VNMs) and will boost the research activity in the field of environmental nanotechnology for a cleaner environment.
Collapse
Affiliation(s)
- Nazrul Islam
- Coal & Energy Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Binoy K Saikia
- Coal & Energy Division, CSIR-North East Institute of Science & Technology, Jorhat, 785006, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Henriquez G, Ahlawat J, Fairman R, Narayan M. Citric Acid-Derived Carbon Quantum Dots Attenuate Paraquat-Induced Neuronal Compromise In Vitro and In Vivo. ACS Chem Neurosci 2022; 13:2399-2409. [PMID: 35942850 DOI: 10.1021/acschemneuro.2c00099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The potent environmental herbicide and weedicide paraquat is linked to neuromotor defects and Parkinson's disease (PD). We have evaluated the neuroprotective role of citric acid-sourced carbon quantum dots (Cit-CQDs) on paraquat-insulted human neuroblastoma-derived SH-SY5Y cell lines and on a paraquat-exposed nematode (Caenorhabditis elegans). Our data reveal that Cit-CQDs are able to scavenge free radicals in test tube assays and mitigate paraquat-elevated reactive oxygen species (ROS) levels in SH-SY5Y cells. Furthermore, Cit-CQDs protect the cell line from paraquat, which otherwise elicits cell death. Cit-CQDs-challenged nematodes demonstrate enhanced survival rates 72 h post-paraquat exposure compared to controls. Paraquat ablates dopamine (DA) neurons, which results in compromised locomotor function in nematodes. However, the neurons remained intact when the nematodes were incubated with Cit-CQDs prior to neurotoxicant exposure. The collective data suggest Cit-CQDs offer neuroprotection for cell lines and organisms from xenotoxicant-associated neuronal injury and death. The study suggests Cit-CQDs as a potentially viable green chemistry-synthesized, biobased nanomaterial for intervention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Gabriela Henriquez
- Department of Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Jyoti Ahlawat
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Robert Fairman
- Department of Biology, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
7
|
Omar NAS, Fen YW, Irmawati R, Hashim HS, Ramdzan NSM, Fauzi NIM. A Review on Carbon Dots: Synthesis, Characterization and Its Application in Optical Sensor for Environmental Monitoring. NANOMATERIALS 2022; 12:nano12142365. [PMID: 35889589 PMCID: PMC9321155 DOI: 10.3390/nano12142365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/17/2023]
Abstract
The development of carbon dots (CDs), either using green or chemical precursors, has inevitably led to their wide range application, from bioimaging to optoelectronic devices. The reported precursors and properties of these CDs have opened new opportunities for the future development of high-quality CDs and applications. Green precursors were classified into fruits, vegetables, flowers, leaves, seeds, stem, crop residues, fungi/bacteria species, and waste products, while the chemical precursors were classified into acid reagents and non-acid reagents. This paper quickly reviews ten years of the synthesis of CDs using green and chemical precursors. The application of CDs as sensing materials in optical sensor techniques for environmental monitoring, including the detection of heavy metal ions, phenol, pesticides, and nitroaromatic explosives, was also discussed in this review. This profound review will offer knowledge for the upcoming community of researchers interested in synthesizing high-quality CDs for various applications.
Collapse
Affiliation(s)
- Nur Alia Sheh Omar
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Yap Wing Fen
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Correspondence:
| | - Ramli Irmawati
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Hazwani Suhaila Hashim
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Nur Syahira Md Ramdzan
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Nurul Illya Muhamad Fauzi
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
8
|
Ahmad H, Khan RA, Koo BH, Alsalme A. Systematic study of physicochemical and electrochemical properties of carbon nanomaterials. RSC Adv 2022; 12:15593-15600. [PMID: 35685184 PMCID: PMC9125983 DOI: 10.1039/d2ra02533g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 11/21/2022] Open
Abstract
Carbon nanomaterials exhibit exceptional properties and broad horizon applications, where graphene is one of the most popular allotropes of this family due to its astounding performance in every stratum vis-à-vis other classical materials. The large surface area of 2630 m2 g−1, high electrical conductivity, and electron mobility of non-toxic graphene nanomaterials serve as the building blocks for supercapacitor studies. In this article, comparative studies are carried out between electrochemically exfoliated graphene sheets (GSs), solvothermally synthesized graphene quantum dots (GQDs) and acid refluxed carbon nanotubes (CNTs) as an energy storage electrode nanomaterial through cyclic voltammetry (CV). The electrochemical properties of the materials are well correlated with the physicochemical characteristics obtained from Raman, Fourier-transform infrared, and absorption spectroscopy. Thin GSs (0.8–1 nm) and small size (6–10 nm) GQDs fabricated by using laboratory-grade 99% purity graphite rods resulted in promising low-cost materials at mass scale as compared to conducting CNTs. The 0D graphene quantum dots proved to be an excellent energy electrode material in an alkaline electrolyte solution compared to other carbon nanomaterials. The distinct characteristic features of GQDs, like superior electrical properties, large surface area, and abundant active sites make them an ideal candidate for utilization in supercapacitors. The GQDs exhibited an enhanced specific capacitance of 113 F g−1 in 6 mol L−1 KOH through cyclic voltammetry. Carbon nanomaterials exhibit exceptional properties and broad horizon applications, where graphene is one of the most popular allotropes of this family due to its astounding performance in every stratum vis-à-vis other classical materials.![]()
Collapse
Affiliation(s)
- Hilal Ahmad
- Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University Ho Chi Minh City 700000 Vietnam .,Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City 700000 Vietnam
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Kingdom of Saudi Arabia
| | - Bon Heun Koo
- School of Materials Science and Engineering, Changwon National University Changwon 51140 Gyeongnam South Korea
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Yakusheva A, Sayapina A, Luchnikov L, Arkhipov D, Karunakaran G, Kuznetsov D. Carbon Quantum Dots' Synthesis with a Strong Chemical Claw for Five Transition Metal Sensing in the Irving-Williams Series. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:806. [PMID: 35269294 PMCID: PMC8912369 DOI: 10.3390/nano12050806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
Carbon quantum dots (CQDs) are an excellent eco-friendly fluorescence material, ideal for various ecological testing systems. Herein, we establish uniform microwave synthesis of the group of carbon quantum dots with specific functionalization of ethylenediamine, diethylenetriamine, and three types of Trilon (A, B and C) with chelate claws -C-NH3. CQDs' properties were studied and applied in order to sense metal cations in an aquatic environment. The results provide the determination of the fluorescence quench in dots by pollutant salts, which dissociate into double-charged ions. In particular, the chemical interactions with CQDs' surface in the Irving-Williams series (IWs) via functionalization of the negatively charged surface were ascribed. CQD-En and CQD-Dien demonstrated linear fluorescence quenching in high metal cation concentrations. Further, the formation of claws from Trilon A, Trilon B, and C effectively caught the copper and nickel cations from the solution due to the complexation on CQDs' surface. Moreover, CQD-Trilon C presented chelating properties of the surface and detected five cations (Cu2+, Ni2+, Ca2+, Mg2+, Zn2+) from 0.5 mg/mL to 1 × 10-7 mg/mL in the Irving-William's series. Dependence was mathematically attributed as an equation (ML regression model) based on the constant of complex formation. The reliability of the data was 0.993 for the training database.
Collapse
Affiliation(s)
- Anastasia Yakusheva
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| | - Anastasia Sayapina
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| | - Lev Luchnikov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| | - Dmitry Arkhipov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| | - Gopalu Karunakaran
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology (Seoul Tech), Gongneung-ro 232, Nowon-gu, Seoul 01811, Korea;
| | - Denis Kuznetsov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia; (A.S.); (L.L.); (D.A.); (D.K.)
| |
Collapse
|
10
|
Damian Guerrero E, Lopez-Velazquez AM, Ahlawat J, Narayan M. Carbon Quantum Dots for Treatment of Amyloid Disorders. ACS APPLIED NANO MATERIALS 2021; 4:2423-2433. [PMID: 33969279 PMCID: PMC8101282 DOI: 10.1021/acsanm.0c02792] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Prion-like amyloids self-template and form toxic oligomers, protofibrils, and fibrils from their soluble monomers; a phenomenon that has been implicated in the onset and progress of neurodegenerative disorders such as Alzheimer's (AD), Parkinson's (PD), Huntington's, and systemic lysozyme amyloidosis. Carbon quantum dots (CQDs), sourced from Na-citrate as a carbon precursor were synthesized and characterized before being tested for their ability to intervene in amyloidogenic (fibril-forming) trajectories. Hen-egg white lysozyme (HEWL) served as a model amyloidogenic protein. A pulse-chase lysozyme fibril-forming assay developed to examine the impact of CQDs on the HEWL amyloid-fibril-forming trajectory used ThT fluorescence as a reporter of mature fibril presence. The results revealed that the Na-citrate-derived CQDs were able to intervene at multiple points along the fibril-forming trajectory by preventing the conversion of both monomeric and oligomeric HEWL intermediates into mature fibrils. In addition, and importantly, the carbon nano material (CNM) was able to dissolve oligomeric HEWL into monomeric HEWL and provoke the disaggregation of mature HEWL fibrils. These results suggest that Na-citrate CQD's intervene in amyloidogenesis by multiple mechanisms. The gathered data, coupled with cell-line results demonstrating the relatively low cytotoxicity of Na-citrate CQDs, suggest that this emerging CNM has the potential to intervene both prophylactically and therapeutically in protein misfolding diseases. The aforementioned findings are likely to enable Na-citrate CQDs to eventually transition to both cell-line and preclinical models of protein-misfolding-related disorders. Importantly, the study outcomes positions Na-citrate CQDs as an important class of chemical, nanotechnological, and biobased interventional tools in neuroscience.
Collapse
Affiliation(s)
- Erick Damian Guerrero
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Angela Marlene Lopez-Velazquez
- Department of Biological Sciences, Bioscience Research Building, Border Biomedical Research Center, the Cellular Characterization and Biorepository Core Facility, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Jyoti Ahlawat
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
11
|
Saraf M, Tavakkoli Yaraki M, Prateek, Tan YN, Gupta RK. Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS APPLIED NANO MATERIALS 2021; 4:911-948. [PMID: 37556236 PMCID: PMC7885806 DOI: 10.1021/acsanm.0c02945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/26/2021] [Indexed: 07/28/2023]
Abstract
The COVID-19 outbreak has exposed the world's preparation to fight against unknown/unexplored infectious and life-threatening pathogens. The unavailability of vaccines, slow or sometimes unreliable real-time virus/bacteria detection techniques, insufficient personal protective equipment (PPE), and a shortage of ventilators and many other transportation equipments have further raised serious concerns. Material research has been playing a pivotal role in developing antimicrobial agents for water treatment and photodynamic therapy, fast and ultrasensitive biosensors for virus/biomarkers detection, as well as for relevant biomedical and environmental applications. It has been noticed that these research efforts nowadays primarily focus on the nanomaterials-based platforms owing to their simplicity, reliability, and feasibility. In particular, nanostructured fluorescent materials have shown key potential due to their fascinating optical and unique properties at the nanoscale to combat against a COVID-19 kind of pandemic. Keeping these points in mind, this review attempts to give a perspective on the four key fluorescent materials of different families, including carbon dots, metal nanoclusters, aggregation-induced-emission luminogens, and MXenes, which possess great potential for the development of ultrasensitive biosensors and infective antimicrobial agents to fight against various infections/diseases. Particular emphasis has been given to the biomedical and environmental applications that are linked directly or indirectly to the efforts in combating COVID-19 pandemics. This review also aims to raise the awareness of researchers and scientists across the world to utilize such powerful materials in tackling similar pandemics in future.
Collapse
Affiliation(s)
- Mohit Saraf
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering,
National University of Singapore, 4 Engineering Drive 4,
117585, Singapore
- Research and Development Department,
Nanofy Technologies Pte. Ltd., 048580,
Singapore
| | - Prateek
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Yen Nee Tan
- Faculty of Science, Agriculture & Engineering,
Newcastle University, Newcastle upon Tyne NE1 7RU,
U.K.
- Newcastle Research & Innovation Institute,
Devan Nair Institute for Employment & Employability, 80
Jurong East Street 21, 609607, Singapore
| | - Raju Kumar Gupta
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Centre for Environmental Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Department of Sustanable Energy Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| |
Collapse
|
12
|
Ghosh Dastidar D, Mukherjee P, Ghosh D, Banerjee D. Carbon quantum dots prepared from onion extract as fluorescence turn-on probes for selective estimation of Zn2+ in blood plasma. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Single-step synthesis of N-doped carbon dots and applied for dopamine sensing, in vitro multicolor cellular imaging as well as fluorescent ink. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Bevacizumab and folic acid dual-targeted gadolinium-carbon dots for fluorescence/magnetic resonance imaging of hepatocellular carcinoma. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Kumar NS, Shaikh HM, Asif M, Al-Ghurabi EH. Engineered biochar from wood apple shell waste for high-efficient removal of toxic phenolic compounds in wastewater. Sci Rep 2021; 11:2586. [PMID: 33510311 PMCID: PMC7844263 DOI: 10.1038/s41598-021-82277-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
This study investigated a novel agricultural low-cost bio-waste biochar derived from wood apple fruit shell waste via the pyrolysis method, which is modified by ball milling and utilized to remove toxic phenol and chlorophenols (4-CPh and 2,4-DCPh) from contaminated aqueous media. The ball-milled wood apple fruit shell waste biochar (WAS-BC) sorbent was systematically analyzed by BET, CHN, and FTIR as well as particle size, SEM-EDS, XPS and TGA studies. The sorption equilibrium and kinetic studies exhibit that the sorption capacity was greater than 75% within the first 45 min of agitation at pH 6.0. The uptake capacity of 2,4-DCPh onto WAS-BC was greater than those of 4-CPh and phenol. Equilibrium results were consistent with the Langmuir isotherm model, while the kinetic data were best represented by the Elovich and pseudo-second-order model. The maximum uptake of phenol, 4-CPh, and 2,4-DCPh was 102.71, 172.24, and 226.55 mg/g, respectively, at 30 ± 1 °C. Thus, this study demonstrates that WAS-BC is an efficient, low-cost sorbent that can be used for the elimination of phenol and chlorophenol compounds from polluted wastewater.
Collapse
Affiliation(s)
- Nadavala Siva Kumar
- Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia.
| | - Hamid M Shaikh
- Department of Chemical Engineering, SABIC Polymer Research Centre, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Mohammad Asif
- Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Ebrahim H Al-Ghurabi
- Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| |
Collapse
|
16
|
Lou Y, Hao X, Liao L, Zhang K, Chen S, Li Z, Ou J, Qin A, Li Z. Recent advances of biomass carbon dots on syntheses, characterization, luminescence mechanism, and sensing applications. NANO SELECT 2021. [DOI: 10.1002/nano.202000232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ying Lou
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Xinyu Hao
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Lei Liao
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Kaiyou Zhang
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Shuoping Chen
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Ziyuan Li
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Jun Ou
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Aimiao Qin
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China
| |
Collapse
|
17
|
Devi S, Shaswat S, Kumar V, Sachdev A, Gopinath P, Tyagi S. Nitrogen-doped carbon quantum dots conjugated isoreticular metal-organic framework-3 particles based luminescent probe for selective sensing of trinitrotoluene explosive. Mikrochim Acta 2020; 187:536. [PMID: 32870369 DOI: 10.1007/s00604-020-04496-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/18/2020] [Indexed: 11/26/2022]
Abstract
Amine group-containing isoreticular metal-organic framework (IRMOF-3) particles are utilized for the first time as a trinitrotoluene (TNT) sensing material. IRMOF-3 particles are synthesized using zinc nitrate as a metal precursor and 2-amino-1,4-benzenedicarboxylic acid as a linker. The nitrogen-doped carbon quantum dots (NCQDs) are synthesized from citric acid and ethylenediamine as carbon and nitrogen precursor, respectively. The NCQDs are conjugated with IRMOF-3 particles as IRMOF-3/NCQDs. The TEM micrograph revealed the average size of IRMOF-3 particles to be 363.66 nm. The photoluminescence emission intensity of IRMOF-3 particles at λem 430 nm is highly increased in the presence of NCQDs (λex 330 nm). Both the as-synthesized IRMOF-3 and IRMOF-3/NCQD particles are explored for TNT detection to compare the effect of NCQDs on the IRMOF-3 particle surface. Lower limit of detection (7.5 × 10-8 M) and higher Stern-Volmer constant (4.46 × 106 M-1) are achieved by IRMOF-3/NCQD particles. The association constant also increased from 5.3 × 104 to 2.78 × 106 M-1 after the conjugation of IRMOF-3 particles with NCQDs. Moreover, enhanced selectivity for TNT over trinitrophenol is achieved using the IRMOF-3/NCQD particles. Graphical Abstract.
Collapse
Affiliation(s)
- S Devi
- CSIR- Central Scientific Instruments Organization, Chandigarh, 160030, India
| | - S Shaswat
- Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - V Kumar
- Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - A Sachdev
- CSIR- Central Scientific Instruments Organization, Chandigarh, 160030, India
| | - P Gopinath
- Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - S Tyagi
- CSIR- Central Scientific Instruments Organization, Chandigarh, 160030, India.
- Analytical Techniques Division, CSIR-CSIO, Chandigarh, 160030, India.
| |
Collapse
|
18
|
Kapoor S, Jha A, Ahmad H, Islam SS. Avenue to Large-Scale Production of Graphene Quantum Dots from High-Purity Graphene Sheets Using Laboratory-Grade Graphite Electrodes. ACS OMEGA 2020; 5:18831-18841. [PMID: 32775885 PMCID: PMC7408250 DOI: 10.1021/acsomega.0c01993] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/09/2020] [Indexed: 05/24/2023]
Abstract
Graphene has unprecedented physical, chemical, and electronic properties, but need of the hour is to develop low-dimensional nanomaterials, such as graphene quantum dots (GQDs), that could be incorporated into nanoscale devices. This article depicts the production of GQDs from ultrafine, thin (0.8-1 nm), bilayer graphene sheets (GSs) possessing large micron-sized lateral dimension, low defect density (I D/I G: 0.1), and oxidation degree (C/O ratio: 27) of lowest level, in contrast to many other techniques where synthesis of GSs was done using analytical-grade expensive graphite electrodes. This low-cost manufacturing of GSs for industrial-scale applications was achieved by utilizing only 99%-purity graphite electrodes. The variants of such graphite electrodes (graphite rod, film, pencil) are etched in different pH electrolytes (H2SO4, NaCl, NaOH) via prompt electrochemical exfoliation, each giving more than 50% yield. Nowadays, semiconductor quantum dots (QDs) are utilized in smart device production industries, but their toxicity is a major issue of concern. Therefore, the dimension of this two-dimensional (2D) material is reduced to <10 nm to generate GQDs. A facile and highly reproducible approach has been reported for the large-scale generation of GQDs (size ca. 6-10 nm) with minimal surface defects. The protocol followed in this article to synthesize GQDs involves the use of ethylenediamine (en), which passivates the surface and reduces defects, thereby enhancing the optical properties. We demonstrate the correlation of the electrochemical and hydrothermal parameters with the growth mechanism and morphological, structural, chemical, and optical properties of the graphene nanomaterials. Raman spectroscopy and X-ray diffraction (XRD) reveal the structural configurations of GSs and GQDs to investigate the nature of defects. Field emission scanning electron microscopy (FESEM) confirms the morphological characteristics of the as-prepared GSs and GQDs with energy-dispersive X-ray (EDX) analysis determining the C/O ratio. The optical properties like UV-visible absorption and fluorescence assays show the quantum confinement effect phenomenon in GQDs. The obtained GSs and GQDs display enhanced solution stability in DI water and other solvents due to controllable oxidation degree as elucidated through Fourier transform infrared (FTIR) analysis.
Collapse
Affiliation(s)
- Sakshi Kapoor
- Centre for Nanoscience and
Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Aaruni Jha
- Centre for Nanoscience and
Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Hilal Ahmad
- Centre for Nanoscience and
Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - S. S. Islam
- Centre for Nanoscience and
Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
19
|
Fan J, Zhang S, Li F, Shi J. Cellulose-based sensors for metal ions detection. CELLULOSE 2020; 27:5477-5507. [PMID: 0 DOI: 10.1007/s10570-020-03158-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/08/2020] [Indexed: 05/27/2023]
|
20
|
Rana S, Kherb J. Validation of specific cation partitioning to molecular surfaces using fluorescent carbon quantum dots. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Gunture, Kaushik J, Garg AK, Saini D, Khare P, Sonkar SK. Pollutant Diesel Soot Derived Onion-like Nanocarbons for the Adsorption of Organic Dyes and Environmental Assessment of Treated Wastewater. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01267] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Gunture
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur-302017, India
| | - Jaidev Kaushik
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur-302017, India
| | - Anjali Kumari Garg
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur-302017, India
| | - Deepika Saini
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur-302017, India
| | - Prateek Khare
- Chemical Engineering Department, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur-302017, India
| |
Collapse
|
22
|
Thulasi S, Kathiravan A, Asha Jhonsi M. Fluorescent Carbon Dots Derived from Vehicle Exhaust Soot and Sensing of Tartrazine in Soft Drinks. ACS OMEGA 2020; 5:7025-7031. [PMID: 32258938 PMCID: PMC7114606 DOI: 10.1021/acsomega.0c00707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 05/06/2023]
Abstract
Recycling of waste into valuable products plays a significant role in sustainable development. Herein, we report the conversion of vehicle exhaust waste soot into water-soluble fluorescent carbon dots via a simple acid refluxion method. The obtained carbon dots were characterized using microscopic and spectroscopic techniques. Microscopic techniques reveal that the prepared carbon material is spherical in shape with an average particle size of ∼4 nm. Spectroscopic studies exhibited that the carbon dots are emissive in nature, and the emission is excitation-dependent. Further, the prepared carbon dots were successfully utilized as a fluorescent probe for the detection of tartrazine with a limit of detection of 26 nM. The sensitivity of carbon dots has also been realized by the detection of trace amounts of tartrazine in commercial soft drinks. Overall, this work demonstrates the conversion air pollutant soot into value-added fluorescent nanomaterials toward sensing applications.
Collapse
Affiliation(s)
- Sekar Thulasi
- Department
of Chemistry, B. S. Abdur Rahman Crescent
Institute of Science and Technology, Vandalur, Chennai 600048, Tamil Nadu, India
| | - Arunkumar Kathiravan
- Vel
Tech Research Park, Vel Tech Rangarajan
Dr Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, Tamil Nadu, India
| | - Mariadoss Asha Jhonsi
- Department
of Chemistry, B. S. Abdur Rahman Crescent
Institute of Science and Technology, Vandalur, Chennai 600048, Tamil Nadu, India
| |
Collapse
|
23
|
Jana J, Chung JS, Hur SH. ZnO-Associated Carbon Dot-Based Fluorescent Assay for Sensitive and Selective Dopamine Detection. ACS OMEGA 2019; 4:17031-17038. [PMID: 31646250 PMCID: PMC6796990 DOI: 10.1021/acsomega.9b02637] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/20/2019] [Indexed: 06/04/2023]
Abstract
This paper presents a simple and highly efficient method for dopamine detection using water-soluble carbon dot nanoparticles. The ZnO-associated carbon dots (CDZs) were synthesized using a green chemical strategy. An examination of the effects of biomolecules on the fluorescence of CDZs revealed selective dopamine-induced quenching. In a phosphate buffer (pH = 7.4) medium, a detection limit of 1.06 nM was obtained. This "turn off" phenomenon was attributed to the electronic interaction between CDZs and dopamine, during the oxidation of dopamine. At lower pH, however, the effects of dopamine on the fluorescence of CDZs were insignificant as the oxidation of dopamine was hindered when the proton concentration was increased. This method was found to be free from the interference of coexisting molecules, that is, ascorbic acid and uric acid. This sensing platform was applied successfully in biological fluids to confirm the practical significance of the as-designed sensor.
Collapse
Affiliation(s)
- Jayasmita Jana
- School of Chemical Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 44610, Republic of Korea
| | - Jin Suk Chung
- School of Chemical Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 44610, Republic of Korea
| | - Seung Hyun Hur
- School of Chemical Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 44610, Republic of Korea
| |
Collapse
|
24
|
Zheng XT, Lai YC, Tan YN. Nucleotide-derived theranostic nanodots with intrinsic fluorescence and singlet oxygen generation for bioimaging and photodynamic therapy. NANOSCALE ADVANCES 2019; 1:2250-2257. [PMID: 36131960 PMCID: PMC9417059 DOI: 10.1039/c9na00058e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/18/2019] [Indexed: 05/21/2023]
Abstract
Nucleic acids are important molecules of life and have recently emerged as important functional materials to synthesize, organize and assemble inorganic nanoparticles for various technological applications. In this study, we have systematically investigated the four basic nucleotides of DNA as precursors to form fluorescent nucleotide derived biodots (N-dots) with unique singlet oxygen generation properties by one-pot hydrothermal synthesis. It has been discovered for the first time that the nitrogenous base adenine accounts for the bright fluorescence, while the sugar and phosphate groups of the nucleotide endow the N-dots with good photo-stability. Among the N-dots synthesized in this study, adenosine triphosphate (ATP)-dots were found to exhibit the highest fluorescence quantum yield (QY) of 13.9%, whereas adenosine diphosphate (ADP)-dots exhibited the best photo-stability maintaining 97.6% photoluminescence intensity after continuous UV excitation for 30 min. Overall, deoxyadenosine monophosphate (dAMP)-dots display both high fluorescence QY (12.4%) and good photo-stability (91.9%). Most critically, dAMP-dots show the highest singlet oxygen generation with a remarkable singlet oxygen (1O2) quantum yield of 1.20 surpassing the 1O2 quantum yield of the conventional photosensitizer Rose Bengal (0.75). Further cellular experiments reveal that dAMP-dots possess excellent cellular uptake ability for successful fluorescent labeling with the ability to kill >60% HeLa cancer cells under white light treatment within 10 minutes. Additionally, N-dots possess excellent stability against both UV irradiation and DNase enzymatic action. These results demonstrate the unique physiochemical properties of N-dots, including an ultra-small size for cellular uptake, tunable photoluminescence for bioimaging, excellent aqueous solubility, high chemical stability and photo-stability as well as excellent singlet oxygen quantum yield with inherent biocompatibility for photodynamic therapy, which are important factors contributing to the promising theranostic applications in future personalized nanomedicine.
Collapse
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138634 Singapore
| | - Yee Ching Lai
- Department of Chemistry, National University of Singapore 3 Science Drive Singapore 117543 Singapore
| | - Yen Nee Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (ASTAR) 2 Fusionopolis Way Singapore 138634 Singapore
- Department of Chemistry, National University of Singapore 3 Science Drive Singapore 117543 Singapore
- Faculty of Science, Agriculture & Engineering, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| |
Collapse
|
25
|
Nekoueian K, Amiri M, Sillanpää M, Marken F, Boukherroub R, Szunerits S. Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chem Soc Rev 2019; 48:4281-4316. [DOI: 10.1039/c8cs00445e] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbon-based quantum particles, especially spherical carbon quantum dots (CQDs) and nanosheets like graphene quantum dots (GQDs), are an emerging class of quantum dots with unique properties owing to their quantum confinement effect.
Collapse
Affiliation(s)
- Khadijeh Nekoueian
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
- Department of Green Chemistry
| | - Mandana Amiri
- Department of Chemistry
- University of Mohaghegh Ardabili
- Ardabil
- Iran
| | - Mika Sillanpää
- Department of Green Chemistry
- School of Engineering Science
- Lappeenranta University of Technology
- Finland
| | - Frank Marken
- Department of Chemistry
- University of Bath
- Bath BA2 7AY
- UK
| | | | | |
Collapse
|