1
|
Lin Q, Chee PL, Pang JJM, Loh XJ, Kai D, Lim JYC. Sustainable Polymeric Biomaterials from Alternative Feedstocks. ACS Biomater Sci Eng 2024; 10:6751-6765. [PMID: 39382551 DOI: 10.1021/acsbiomaterials.4c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
As materials engineered to interact with biological systems for medical purposes, polymeric biomedical materials have revolutionized and are indispensable in modern healthcare. However, aging populations and improving healthcare standards worldwide have resulted in ever-increasing demands for such biomaterials. Currently, many clinically used polymers are derived from nonrenewable petroleum resources, thus spurring the need for exploring alternatives for the next generation of sustainable biomaterials. Other than biomass, this Perspective also spotlights carbon dioxide and postuse plastics as viable resources potentially suitable for biomaterial production. For each alternative feedstock, key recent developments and practical considerations are discussed, including emerging biomaterial applications, possible feedstock sources, and hindrances toward translation and practical adoption. Other than replacements for petroleum-derived polymers, we explore how utilization of these alternatives capitalizes on their intrinsic physiochemical and material properties to achieve their desired therapeutic effects. We hope that this Perspective can stimulate further development in sustainable biomaterials to achieve practical therapeutic benefits as part of a circular materials economy with minimal environmental impact.
Collapse
Affiliation(s)
- Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jaime J M Pang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Dr, 637459, Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
2
|
Wang Z, Zhang Y, Wu Z, Zhao Y. DTBP
‐promoted Passerini‐type reaction of isocyanides with aldehydes: Synthesis of α‐acyloxycarboxamides. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhuo Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry Northeast Normal University Changchun China
| | - Yan Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry Northeast Normal University Changchun China
| | - Zi‐Han Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry Northeast Normal University Changchun China
| | - Yu‐Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry Northeast Normal University Changchun China
| |
Collapse
|
3
|
Wang C, Yu B, Li W, Zou W, Cong H, Shen Y. Effective strategy for polymer synthesis: multicomponent reactions and click polymerization. MATERIALS TODAY CHEMISTRY 2022; 25:100948. [DOI: 10.1016/j.mtchem.2022.100948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
|
4
|
Banfi L, Basso A, Lambruschini C, Moni L, Riva R. The 100 facets of the Passerini reaction. Chem Sci 2021; 12:15445-15472. [PMID: 35003575 PMCID: PMC8654045 DOI: 10.1039/d1sc03810a] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/29/2021] [Indexed: 01/07/2023] Open
Abstract
This perspective aims at celebrating the 100th anniversary of the discovery of the Passerini three component reaction. After being nearly neglected for many years, now this reaction has become quite popular, thanks to the achievements of the last 30 years, which have revealed several chances of exploitation in organic synthesis. Though not being comprehensive, this review means to show the various ways that have been used in order to expand the utility of the Passerini reaction. Post-MCR transformations to give heterocycles or peptidomimetics, variants through single component replacement, stereochemical issues, and applications in total syntheses will be especially covered.
Collapse
Affiliation(s)
- Luca Banfi
- Department of Chemistry and Industrial Chemistry, University of Genova Via Dodecaneso 31 16146 Genova Italy
| | - Andrea Basso
- Department of Chemistry and Industrial Chemistry, University of Genova Via Dodecaneso 31 16146 Genova Italy
| | - Chiara Lambruschini
- Department of Chemistry and Industrial Chemistry, University of Genova Via Dodecaneso 31 16146 Genova Italy
| | - Lisa Moni
- Department of Chemistry and Industrial Chemistry, University of Genova Via Dodecaneso 31 16146 Genova Italy
| | - Renata Riva
- Department of Chemistry and Industrial Chemistry, University of Genova Via Dodecaneso 31 16146 Genova Italy
| |
Collapse
|
5
|
Tuten BT, Bui AH, Wiedbrauk S, Truong VX, Raston CL, Barner-Kowollik C. Four component Passerini polymerization of bulky monomers under high shear flow. Chem Commun (Camb) 2021; 57:8328-8331. [PMID: 34323263 DOI: 10.1039/d1cc02984c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce a four component Passerini polymerization utilizing sterically bulky isocyanide monomers. Under typical Passerini conditions, bulky isocyanides do not react within standard Passerini reaction timescales (hours). We overcome this challenge via the unique physiochemical conditions present in a vortex fluidic device, reducing the reaction time to 2 h on average. Under these high-shear thin-film conditions, bulky isocyanides are readily incorporated into the multicomponent polymerization without the need of high-pressure or temperature. Finally, we demonstrate that the four component approach using functional cyclic anhydrides allows for post-polymerization modification.
Collapse
Affiliation(s)
- Bryan T Tuten
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.
| | | | | | | | | | | |
Collapse
|
6
|
Schneider RV, Sehlinger A, Meier MAR. A Direct One‐Pot Modification of β‐Cyclodextrin
via
the Ugi‐Five‐Component Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202002367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rebekka V. Schneider
- Karlsruhe Institute of Technology (KIT) Institute of Organic Chemistry (IOC) Materialwissenschaftliches Zentrum (MZE) Straße am Forum 7 76131 Karlsruhe Germany
| | - Ansgar Sehlinger
- Karlsruhe Institute of Technology (KIT) Institute of Organic Chemistry (IOC) Materialwissenschaftliches Zentrum (MZE) Straße am Forum 7 76131 Karlsruhe Germany
| | - Michael A. R. Meier
- Karlsruhe Institute of Technology (KIT) Institute of Organic Chemistry (IOC) Materialwissenschaftliches Zentrum (MZE) Straße am Forum 7 76131 Karlsruhe Germany
- Karlsruhe Institute of Technology (KIT) Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|