1
|
Lin L, Zhang S, Luo L, Lu M, An H. Structural feature of RrGGP2 promoter and functional analysis of RrNAC56 regulating RrGGP2 expression and ascorbate synthesis via stress-inducible cis-elements in Rosa roxburghii Tratt. Int J Biol Macromol 2024; 282:136584. [PMID: 39419162 DOI: 10.1016/j.ijbiomac.2024.136584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/14/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Rosa roxburghii Tratt is a well-known horticultural crop that produces fruits with extremely high l-ascorbic acid (AsA) levels, and GDP-l-galactose phosphorylase2 (RrGGP2) encodes a major enzyme operating in AsA biosynthesis. This study aims to elucidate the transcriptional mechanism of RrGGP2 underlying AsA overproduction under abiotic stress. Herein, the sequence of RrGGP2 promoter (PRrGGP2) was isolated. The analysis of the PRrGGP2 detected an upstream open reading frame encoding a 64-amino acid peptide as well as a number of cis-acting elements responsive to environmental factors and hormones. Several truncated promoter fragments were constructed for dual-luciferase assays which revealed a critical promoter region (-1949 to -2089 bp) for PRrGGP2 activity. Overexpressing β-glucuronidase (GUS) and RrGGP2 under the control of PRrGGP2 in transgenic Arabidopsis thaliana increased the GUS activity and AsA content, respectively. Furthermore, the extent of the increases was significantly influenced by temperature and abscisic acid. Yeast one-hybrid and dual-luciferase assays indicated that RrNAC56 could activate PRrGGP2. Cold stress significantly increased the transcription of RrNAC56 and RrGGP2 in R. roxburghii fruits, which resulted in AsA accumulation. These findings offer a theoretical foundation for understanding the transcriptional regulation of RrGGP2, while also uncover a novel mechanism of RrNAC56-RrGGP2 module-mediated abiotic stress response via regulating AsA synthesis.
Collapse
Affiliation(s)
- Ling Lin
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, People's Republic of China
| | - Shuxuan Zhang
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, People's Republic of China
| | - Lihua Luo
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, People's Republic of China
| | - Min Lu
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, People's Republic of China
| | - Huaming An
- Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang 550025, People's Republic of China.
| |
Collapse
|
2
|
Wang M, Xu J, Ding Z, Xie J. Prolong the postharvest shelf life of spinach through the antioxidative ability of melatonin. Food Chem X 2023; 19:100769. [PMID: 37780277 PMCID: PMC10534088 DOI: 10.1016/j.fochx.2023.100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 10/03/2023] Open
Abstract
Spinach is also known as Persian cuisine, it is rich in nutrients such as protein, vitamin C and minerals, and has high nutritional value. In this study, Spinach was treated with melatonin in order to prolong its shelf life. Melatonin has strong antioxidant effects as an endogenous free radical scavenger. The spinach was sprayed with 0.10, 0.20 and 0.30 mg/mL melatonin solution after harvesting, and distilled water was used as control for low temperature storage at 4 °C. The results showed that melatonin spraying Spinach delayed the degradation of chlorophyll, especially the treatment of 0.20 mg/mL melatonin was the most effective. The content of soluble sugar and soluble protein in spinach tissue was kept high, the accumulation of malondialdehyde (MDA) was reduced, and the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were increased. These findings suggested that melatonin treatment may be a useful technique to prolong the postharvest life of spinach and improve its quality.
Collapse
Affiliation(s)
- Mingying Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jin Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
3
|
Lou J, Wu C, Wang H, Cao S, Wei Y, Chen Y, Jiang S, Shao X, Xu F. Melatonin treatment delays postharvest senescence of broccoli with regulation of carotenoid metabolism. Food Chem 2023; 408:135185. [PMID: 36525725 DOI: 10.1016/j.foodchem.2022.135185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
The effect of melatonin treatment on the carotenoid metabolism in broccoli florets during storage was explored. The results indicated that 100 µmol/L of melatonin maintained the sensory quality of broccoli florets, which retarded the increase of the L* value and the decrease of the H value. Melatonin treatment increased the activities of tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), serotonin N-acetyltransferase (SNAT) and N-acetylserotonin methyltransferase (ASMT), leading to the enrichment of endogenous melatonin content in broccoli florets. Meanwhile, the treatment inhibited the concentrations of β-carotene, β-cryptoxanthin, zeaxanthin and lutein, which was beneficial in delaying the yellowing of broccoli. In addition, a series of carotenoid biosynthetic genes such as BoPSY, BoPDS, BoZDS, BoLCYβ and BoZEP was also suppressed by melatonin. Further analysis revealed that the lower carotenoid content and the down-regulated BoNCED expression in treated broccoli resulted in less accumulation of abscisic acid precursors, inhibiting abscisic acid production during the yellowing process.
Collapse
Affiliation(s)
- Jiajun Lou
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315100, China
| | - Chenghao Wu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315100, China
| | - Hongfei Wang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315100, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yingying Wei
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315100, China
| | - Yi Chen
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315100, China
| | - Shu Jiang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315100, China
| | - Xingfeng Shao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315100, China
| | - Feng Xu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315100, China.
| |
Collapse
|
4
|
Arnao MB, Cano A, Hernández-Ruiz J. Phytomelatonin: an unexpected molecule with amazing performances in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5779-5800. [PMID: 35029657 DOI: 10.1093/jxb/erac009] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 05/14/2023]
Abstract
Phytomelatonin, a multifunctional molecule that has been found to be present in all plants examined to date, has an important role in plants as a modulatory agent (a biostimulator) that improves plant tolerance to both biotic and abiotic stress. We present a review of phytomelatonin that considers its roles in plant metabolism and in particular its interactions with plant hormone network. In the primary metabolism of plants, melatonin improves the rate and efficiency of photosynthesis, as well related factors such as stomatal conductance, intercellular CO2, and Rubisco activity. It has also been shown to down-regulate some senescence transcription factors. Melatonin up-regulates many enzyme transcripts related to carbohydrates (including sucrose and starch), amino acids, and lipid metabolism, optimizing N, P, and S uptake. With respect to the secondary metabolism, clear increases in polyphenol, glucosinolate, terpenoid, and alkaloid contents have been described in numerous melatonin-treated plants. Generally, the most important genes of these secondary biosynthesis pathways have been found to be up-regulated by melatonin. The great regulatory capacity of melatonin is a result of its control of the redox and plant hormone networks. Melatonin acts as a plant master regulator, up-/down-regulating different plant hormone levels and signalling, and is a key player in redox homeostasis. It has the capacity to counteract diverse critical situations such as pathogen infections and abiotic stresses, and provide plants with varying degrees of tolerance. We propose possible future applications of melatonin for crop improvement and post-harvest product preservation.
Collapse
Affiliation(s)
- Marino B Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Antonio Cano
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| | - Josefa Hernández-Ruiz
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100-Murcia, Spain
| |
Collapse
|
5
|
Yang Q, Luo M, Zhou Q, Zhou X, Zhao Y, Chen J, Ji S. Insights into Profiling of 24-Epibrassinolide Treatment Alleviating the Loss of Glucosinolates in Harvested Broccoli. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Exogenous Melatonin Alleviated Leaf Yellowing via Inhibiting Respiration and Ethylene Biosynthesis during Shelf Life in Pakchoi. PLANTS 2022; 11:plants11162102. [PMID: 36015405 PMCID: PMC9416342 DOI: 10.3390/plants11162102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
Postharvest yellowing of leafy plant is a manifestation of senescence, and melatonin (MT) is known to delay leaf senescence in some higher plants. Herein, we investigated the effect of exogenous MT treatment on postharvest pakchoi by monitoring the ethylene biosynthesis and respiratory metabolism. Results showed that exogenous MT effectively extended the shelf life, delayed leaf yellowing, minimized the alteration in Fv/Fm ratio and maintained higher integrity of chloroplast in pakchoi. There was a significant correlation between yellowing index, respiration rate and ethylene production. MT treatments greatly delayed the yellowing process of pakchoi that was associated with the reduced activity of glycolysis pathway and tricarboxylic acid cycle (TCA), increased proportion of pentose phosphate pathway (PPP) in respiratory metabolism, as manifested by the lower activity of phosphohexose isomerase (PHI), succinate dehydrogenase (SDH) and cytochrome C oxidase (COX), downregulated the expression of their corresponding genes, but enhanced the activity and expression level of 6 phosphogluconate dehydrogenase (6PGDH). MT also markedly maintain chlorophyll content by inhibiting ethylene production and action during shelf life, likely a consequence of reduced activities of 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) and ACC oxidase (ACO), as well as the expression levels of their related genes. These results collectively indicate that melatonin alleviated leaf yellowing of postharvest pakchoi might be attributed to the suppression of the ethylene biosynthesis and respiratory metabolism, and our findings contribute to provide a good candidate measure for extending shelf life and reducing postharvest loss of pakchoi.
Collapse
|
7
|
Effect of Melatonin in Broccoli Postharvest and Possible Melatonin Ingestion Level. PLANTS 2022; 11:plants11152000. [PMID: 35956477 PMCID: PMC9370688 DOI: 10.3390/plants11152000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
The post-harvest stage of broccoli production requires cold storage to obtain enough days of shelf life. It has been proved that melatonin is useful as a post-harvest agent in fruits and vegetables, including broccoli. In this study, the broccoli heads treated with melatonin have a longer shelf life than the control samples, which was reflected in parameters such as fresh weight, hue angle (expresses color quality), and chlorophyll and carotenoid contents. Treatments with 100 μM melatonin for 15 or 30 min seem to be the most appropriate, extending the broccoli’s shelf life to almost 42 days, when it is normally around 4 weeks. In addition, a study on the possible impact that melatonin treatments in broccoli could have on melatonin intake in humans is presented. The levels of superficial melatonin, called washing or residual melatonin, are measured, showing the possible incidence in estimated blood melatonin levels. Our results suggest that post-harvest treatments with melatonin do not have to be a handicap from a nutritional point of view, but more research is needed.
Collapse
|
8
|
Liu B, Tao Y, Manickam S, Li D, Han Y, Yu Y, Liu D. Influence of sequential exogenous pretreatment and contact ultrasound-assisted air drying on the metabolic pathway of glucoraphanin in broccoli florets. ULTRASONICS SONOCHEMISTRY 2022; 84:105977. [PMID: 35279633 PMCID: PMC8915014 DOI: 10.1016/j.ultsonch.2022.105977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
In this investigation, the combinations of exogenous pretreatment (melatonin or vitamin C) and contact ultrasound-assisted air drying were utilized to dry broccoli florets. To understand the influences of the studied dehydration methods on the conversion of glucoraphanin to bioactive sulforaphane in broccoli, various components (like glucoraphanin, sulforaphane, myrosinase, etc.) and factors (temperature and moisture) involved in the metabolism pathway were analyzed. The results showed that compared with direct air drying, the sequential exogenous pretreatment and contact ultrasound drying shortened the drying time by 19.0-22.7%. Meanwhile, contact sonication could promote the degradation of glucoraphanin. Both melatonin pretreatment and vitamin C pretreatment showed protective effects on the sulforaphane content and myrosinase activity during the subsequent drying process. At the end of drying, the sulforaphane content in samples dehydrated by the sequential melatonin (or vitamin C) pretreatment and ultrasound-intensified drying was 14.4% (or 26.5%) higher than only air-dried samples. The correlation analysis revealed that the exogenous pretreatment or ultrasound could affect the enzymatic degradation of glucoraphanin and the generation of sulforaphane through weakening the connections of sulforaphane-myrosinase, sulforaphane-VC, and VC-myrosinase. Overall, the reported results can enrich the biochemistry knowledge about the transformation of glucoraphanin to sulforaphane in cruciferous vegetables during drying, and the combined VC/melatonin pretreatment and ultrasound drying is conducive to protect bioactive sulforaphane in dehydrated broccoli.
Collapse
Affiliation(s)
- Beini Liu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yang Tao
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Yongbin Han
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Ying Yu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Dongfeng Liu
- Zelang Postgraduate Working Station, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Hernández-Ruiz J, Ruiz-Cano D, Giraldo-Acosta M, Cano A, Arnao MB. Melatonin in Brassicaceae: Role in Postharvest and Interesting Phytochemicals. Molecules 2022; 27:1523. [PMID: 35268624 PMCID: PMC8911641 DOI: 10.3390/molecules27051523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Brassicaceae plants are of great interest for human consumption due to their wide variety and nutritional qualities. Of the more than 4000 species that make up this family, about a hundred varieties of 6-8 genera are extensively cultivated. One of the most interesting aspects is its high content of glucosinolates, which are plant secondary metabolites with widely demonstrated anti-oncogenic properties that make them healthy. The most relevant Brassicaceae studies related to food and melatonin are examined in this paper. The role of melatonin as a beneficial agent in seedling grown mainly in cabbage and rapeseed and in the postharvest preservation of broccoli is especially analyzed. The beneficial effect of melatonin treatments on the organoleptic properties of these commonly consumed vegetables can be of great interest in the agri-food industry. Melatonin application extends the shelf life of fresh-cut broccoli while maintaining optimal visual and nutritional parameters. In addition, an integrated model indicating the role of melatonin on the organoleptic properties, the biosynthesis of glucosinolates and the regulatory action of these health-relevant compounds with anti-oncogenic activity is presented.
Collapse
Affiliation(s)
| | | | | | | | - Marino B. Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain; (J.H.-R.); (D.R.-C.); (M.G.-A.); (A.C.)
| |
Collapse
|
10
|
Hong SJ, Jeong H, Yoon S, Jo SM, Lee Y, Park SS, Shin EC. A comprehensive study for taste and odor compounds using electronic tongue and nose in broccoli stem with different thermal processing. Food Sci Biotechnol 2022; 31:191-201. [PMID: 35186349 PMCID: PMC8818075 DOI: 10.1007/s10068-021-01029-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 01/25/2023] Open
Abstract
This study analyzed taste and odor profiles in broccoli stems with different methods of thermal processing using electronic tongue and electronic nose. In electronic tongue analysis, umami and bitterness were obviously changed upon thermal processing, however, saltiness, sweetness, and sourness showed slight variations. Between raw and thermally processed broccolis, microwaved broccoli showed the highest changes of tastes based on raw broccoli, however, blanched broccoli showed similar tastes to raw broccoli compared with the others. In electronic nose analysis, a total of 21 volatiles in broccolis were analyzed. Sulfur-containing volatiles were changed via thermal steps, and the generation and reduction of sulfur-containing compounds have occurred (i.e. methnaethiol, 2,4,5-trimethylthiazole). In addition, some of the thermal steps (oven-heating, microwave heating, air-frying) have occurred Maillard reaction, and thus pyridine was generated. Therefore, this study can provide flavor data in broccoli, and contribute to further research for flavor characteristics in broccoli using electronic sensors.
Collapse
Affiliation(s)
- Seong Jun Hong
- Department of Food Science, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Hyangyeon Jeong
- Department of Food Science, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Sojeong Yoon
- Department of Food Science, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Seong Min Jo
- Department of Food Science, Gyeongsang National University, Jinju, 52725 Republic of Korea
| | - Youngseung Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan, Republic of Korea
| | - Sung-Soo Park
- Department of Food Science and Nutrition, Jeju National University, Jeju, Republic of Korea
| | - Eui-Cheol Shin
- Department of Food Science, Gyeongsang National University, Jinju, 52725 Republic of Korea
| |
Collapse
|
11
|
Xu Y, Yu J, Chen J, Gong J, Peng L, Yi Y, Ai Y, Hou W, Wang H, Min T. Melatonin maintains the storage quality of fresh-cut Chinese water chestnuts by regulating phenolic and reactive oxygen species metabolism. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Fresh-cut Chinese water chestnuts (CWCs) are prone to quality deterioration during storage, which does not meet consumer demand. In this study, the effect of exogenous melatonin (5 mM) on the quality and potential mechanisms in fresh-cut CWC was investigated. The results showed that melatonin treatment alleviated the cut-surface discoloration of CWCs. Not only did this treatment significantly slow down the increase in browning degree and b* as well as the decrease in L*, but also significantly delayed the loss of weight and total soluble solids. Further investigations indicated that melatonin-treated fresh-cut CWCs exhibited significantly lower total phenolics and soluble quinones and suppressed the activities of phenylalanine ammonia-lyase, polyphenol oxidase, and peroxidase. Meanwhile, when fresh-cut CWCs were treated with melatonin, the total flavonoid concentration was significantly decreased compared to the control. Additionally, melatonin significantly inhibited the accumulation of H2O2 and malondialdehyde (MDA) as well as enhanced the activities of superoxide dismutase and catalase by promoting the production of O2 -·. In summary, melatonin treatment may delay the surface discoloration of fresh-cut CWCs by inhibiting phenolic compound metabolism and improving antioxidant capacity, thereby effectively maintaining the quality, and prolonging the shelf life of fresh-cut CWCs.
Collapse
|
12
|
Tian P, Lu X, Bao J, Zhang X, Lu Y, Zhang X, Wei Y, Yang J, Li S, Ma S. Transcriptomics analysis of genes induced by melatonin related to glucosinolates synthesis in broccoli hairy roots. PLANT SIGNALING & BEHAVIOR 2021; 16:1952742. [PMID: 34545770 PMCID: PMC8526036 DOI: 10.1080/15592324.2021.1952742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 05/21/2023]
Abstract
Glucoraphanin (GRA) is found in the seeds and vegetative organs of broccoli (Brassica oleracea L. var. italica Planch) as the precursor of anti-carcinogen sulforaphane (SF). The yield of GRA obtained from these materials is weak and the cost is high. In recent years, the production of plant secondary metabolites by large-scale hairy roots culture in vitro has succeeded in some species. Melatonin (MT) is a natural hormone which existed in numerous organisms. Studies have demonstrated that MT can improve the synthesis of secondary metabolites in plants. At present, it has not been reported that MT regulates the biosynthesis of glucoraphanin in broccoli hairy roots. In this study, the broccoli hairy roots that grew for 20 d were respectively treated by 500 µM MT for 0, 6, 12, 20 and 32. To explore the reason of changes in secondary metabolites and reveal the biosynthetic pathway of glucoraphanin at transcriptional level. Compared with 0 h, the yield of GRA under other treatments was increased, and the overall trend was firstly increased and then decreased. The total yield of GRA reached the highest at 12 h, which was 1.22-fold of 0 h. Then, the genome of broccoli as the reference, a total of 13234 differentially expressed genes (DEGs) were identified in broccoli hairy roots under treatment with 500 µM MT for 0, 6, 12, 20 and 32 h, respectively. Among these DEGs, 6266 (47.35%) were upregulated and 6968 (52.65%) were downregulated. It was found that the pathway of 'Glucosinolates biosynthesis (ko00966)' was enriched in the 16th place by Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the upregulated DEGs. The expression of key genes in the GRA biosynthesis pathway was upregulated at all time points, and a deduced GRA biosynthesis pathway map was constructed for reference.
Collapse
Affiliation(s)
- Peng Tian
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jinyu Bao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xiumin Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yaqi Lu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoling Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yunchun Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jie Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Sheng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Shaoying Ma
- Basical Experimental Teaching Center, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
13
|
Melatonin: A blooming biomolecule for postharvest management of perishable fruits and vegetables. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
He W, Luo H, Xu H, Zhou Z, Li D, Bao Y, Fu Q, Song J, Jiao Y, Zhang Z. Effect of exogenous methyl jasmonate on physiological and carotenoid composition of yellow maize sprouts under NaCl stress. Food Chem 2021; 361:130177. [PMID: 34077883 DOI: 10.1016/j.foodchem.2021.130177] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022]
Abstract
Carotenoid content in maize sprouts can be increased by NaCl stress, although high NaCl concentrations negatively impact plant growth. The effects of exogenous methyl jasmonate (MeJA) on contents of carotenoid and antioxidant capacity of yellow maize sprouts under NaCl stress were investigated. Our results showed that treatments of NaCl both alone and combined with MeJA enhanced the carotenoid accumulation in maize sprouts. Moreover, the carotenoid biosynthesis related genes showed different expression patterns under addition of MeJA treatment. Additionally, the combined treatment led to significantly higher content of most carotenoids profiles and the addition of MeJA could alleviate the harmful effect caused by NaCl stress. Furthermore, the combined treatment improved antioxidant enzyme activities and radical scavenging capacity. The results implied that MeJA is kind of effective plant growth regulator for enhancing carotenoid accumulation in maize sprouts by up-regulating the expression levels of key genes involved in carotenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Weiwei He
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hao Luo
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Hao Xu
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Zhiyi Zhou
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Qun Fu
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Jiangfeng Song
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China.
| | - Yan Jiao
- Xinghua Dongao Food Co., Ltd, Taizhou, Jiangsu 225700, China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| |
Collapse
|
15
|
Luo F, Fang H, Wei B, Cheng S, Zhou Q, Zhou X, Zhang X, Zhao Y, Ji S. Advance in yellowing mechanism and the regulation technology of post-harvested broccoli. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Yellowing is one of the main problems of quality deterioration in the storage, transportation, and sales of post-harvested broccoli, which seriously affects the commodity value of broccoli. Therefore, it is of significance to understand the mechanism of the process and develop effective regulation technology. In this review, we expounded the changes in the appearance of the flower ball, bud morphology, and calyx cell structure, as well as endogenous pigment metabolism, accompanying the yellowing process of broccoli. In addition, recent research on the molecular mechanism of yellowing was summarized from the aspects of transcriptome analysis and transcription regulation. Finally, the progress on the control technology of broccoli yellowing was reviewed.
Collapse
Affiliation(s)
- Feng Luo
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
- Department of Food Science and Engineering, Jinzhou Medical University, Jinzhou, China
| | - Huixin Fang
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Baodong Wei
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - shunchang Cheng
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Qian Zhou
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xin Zhou
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xuan Zhang
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yingbo Zhao
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Shujuan Ji
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
16
|
Wei L, Liu C, Wang J, Younas S, Zheng H, Zheng L. Melatonin immersion affects the quality of fresh‐cut broccoli (
Brassica oleracea
L.) during cold storage: Focus on the antioxidant system. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Liyang Wei
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Changhong Liu
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Jinjin Wang
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Shoaib Younas
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Huanhuan Zheng
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| | - Lei Zheng
- School of Food and Biological Engineering Hefei University of Technology Hefei China
| |
Collapse
|
17
|
Melatonin treatment affects the glucoraphanin-sulforaphane system in postharvest fresh-cut broccoli (Brassica oleracea L.). Food Chem 2019; 307:125562. [PMID: 31648174 DOI: 10.1016/j.foodchem.2019.125562] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/14/2019] [Accepted: 09/16/2019] [Indexed: 01/20/2023]
Abstract
The effect of postharvest melatonin treatment on sulforaphane production of fresh-cut broccoli at 4℃ during storage was investigated in this study. Florets treated with 100 μM melatonin exhibited higher contents of total glucosinolates and sulforaphane. Glucoraphanin content was significantly increased after melatonin treatment, and which was explained by gene analysis. Expressions of glucoraphanin biosynthesis genes including Elong, CYP83A1, MYB28, UGT74B1 and FMOGS-OX1 were up-regulated while AOP2 was obviously decreased by melatonin treatment, leading to a higher glucoraphanin accumulation. In addition, application of melatonin enhanced the myrosinase activity and the expression level of MYO, benefiting the formation of sulforaphane. This study demonstrates that melatonin treatment positively affected the glucoraphanin-sulforaphane system in postharvest fresh-cut broccoli.
Collapse
|
18
|
Chiu YC, Matak K, Ku KM. Methyl jasmonate treated broccoli: Impact on the production of glucosinolates and consumer preferences. Food Chem 2019; 299:125099. [PMID: 31299513 DOI: 10.1016/j.foodchem.2019.125099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 01/04/2023]
Abstract
Applying methyl jasmonate can mimic the defense response to insect damage in broccoli and enhances the production of glucosinolates, especially inducible indolyl GS-neoglucobrassicin. Previous studies have suggested that glucosinolates and their hydrolysis products are anti-carcinogenic. Therefore, MeJA treatment may increase the nutritional quality of broccoli. However, there are few reports on the sensory evaluation and consumer acceptance of MeJA-treated broccoli. In this study, an untrained consumer panel could not detect any taste differences between steamed MeJA-treated and untreated broccoli, even though the steamed MeJA-treated broccoli contained 50% more glucosinolates than untreated broccoli. The partial least square-regression model suggested that neoglucobrassicin-derived hydrolysis compounds were the major metabolites that determined overall preference for raw MeJA-treated broccoli potentially due to their potential negative sensory qualities. The results imply that MeJA treatment can increase the nutritional quality of broccoli without sacrificing taste in precooked meals or frozen vegetables.
Collapse
Affiliation(s)
- Yu-Chun Chiu
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Kristen Matak
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Kang-Mo Ku
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA; Department of Horticulture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61886, Republic of Korea.
| |
Collapse
|
19
|
Luo F, Cai JH, Kong XM, Zhou Q, Zhou X, Zhao YB, Ji SJ. Transcriptome profiling reveals the roles of pigment mechanisms in postharvest broccoli yellowing. HORTICULTURE RESEARCH 2019; 6:74. [PMID: 31231532 PMCID: PMC6544632 DOI: 10.1038/s41438-019-0155-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/06/2019] [Accepted: 04/12/2019] [Indexed: 05/08/2023]
Abstract
Postharvest broccoli is prone to yellowing during storage, which is the key factor leading to a reduction in value. To explore appropriate control methods, it is important to understand the mechanisms of yellowing. We analyzed the genes related to the metabolism of chlorophyll, carotenoids, and flavonoids and the transcription factors (TFs) involved in broccoli yellowing using transcriptome sequencing profiling. Broccoli stored at 10 °C showed slight yellowing on postharvest day 5 and serious symptoms on day 12. There were significant changes in chlorophyll fluorescence kinetics, mainly manifesting as a decrease in the Fv/Fm value and an increase in nonphotochemical quenching, during the yellowing process. Transcriptome sequencing profiles from samples of fresh broccoli and broccoli with slight and severe yellowing revealed 6, 5, and 4 differentially expressed genes involved in chlorophyll metabolism, carotenoid biosynthesis, and flavonoid biosynthesis, respectively. The transcription factor gene ontology categories showed that the MYB, bHLH, and bZip gene families were involved in chlorophyll metabolism. In addition, the transcription factor families included NACs and ethylene response factors (ERFs) that regulated carotenoid biosynthesis. Reverse transcription polymerase chain reaction further confirmed that bHLH66, PIF4, LOB13, NAC92, and APL were vital transcription factors that potentially regulated the CAO and HYD genes and were involved in chlorophyll metabolism and the carotenoid biosynthetic process. The flavonoid biosynthetic pathway was mainly regulated by MYBs, NACs, WRKYs, MADSs, and bZips. The results of the differentially expressed gene (DEG) and pigment content analyses indicated that the transcriptome data were accurately and positively associated with broccoli yellowing.
Collapse
Affiliation(s)
- Feng Luo
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Jia-Hui Cai
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Xi-Man Kong
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Qian Zhou
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Xin Zhou
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Ying-Bo Zhao
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| | - Shu-Juan Ji
- Department of Food Science, Shenyang Agricultural University, 110866 Shenyang, PR China
| |
Collapse
|