1
|
Khan AU, Shahzad M, Mushtaq A, Naseer MM. Green and sustainable synthesis of chiral alcohols: the role of Daucus carota as a biocatalyst in organic chemistry. RSC Adv 2025; 15:11863-11880. [PMID: 40236574 PMCID: PMC11999056 DOI: 10.1039/d5ra00901d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025] Open
Abstract
Chiral alcohols are essential intermediates in pharmaceuticals, agrochemicals, and advanced materials. Conventional asymmetric reduction of ketones relies on costly metal catalysts with significant environmental impact. Biocatalysis, particularly whole-cell systems, offers a sustainable alternative, providing high regio- and stereoselectivity under mild conditions. Daucus carota (carrot) roots serve as a promising biocatalyst due to their broad substrate compatibility and natural cofactor recycling ability, reducing reliance on toxic reagents and energy-intensive processes, making them both environmentally sustainable and economically viable. This review highlights the potential of D. carota for chiral alcohol synthesis while addressing challenges such as long reaction times, high biocatalyst requirements, and substrate limitations. Ongoing research focuses on optimizing reaction conditions, testing different carrot varieties, and incorporating additives to enhance efficiency and expand applicability.
Collapse
Affiliation(s)
- Azmat Ullah Khan
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Shahzad
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | | |
Collapse
|
2
|
Highly Efficient Biosynthesis of Nicotinic Acid by Immobilized Whole Cells of E. coli Expressing Nitrilase in Semi-Continuous Packed-Bed Bioreactor. Catalysts 2023. [DOI: 10.3390/catal13020371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
A recombinant E. coli, expressing nitrilase from Acidovorax facilis 72W with dual-site expression plasmid pRSFduet (E. coli pRSF-AfNit2), was constructed. It showed higher soluble expression of nitrilase than that in the pET21a plasmid. The recombinant nitrilase can efficiently catalyze the hydrolysis of 3-cyanopyridine to nicotinic acid. The whole cells of E. coli pRSF-AfNit2 were immobilized by using sodium alginate/glutaraldehyde/polyethylene imine as the best immobilized reagents. The immobilized cells showed 95% activity recovery and excellent mechanical strength, with improved thermal stability and pH stability. They also retained 82% of initial activity after nearly two months of storage at 4 °C. A semi-continuous packed-bed bioreactor (sPBR) filled with the immobilized cells was studied for efficient production of nicotinic acid. After optimization, the highest space–time yield of 1576 g/(L·d) was obtained on 0.8 M substrate concentration at 2 mL/min of flow rate. The sPBR was repeatedly operated for 41 batches, keeping 100% conversion in the presence of 30 mM CaCl2. Finally, 95 g of nicotinic acid were obtained at 90% yield after separation and purification. The developed technology has potential application value.
Collapse
|
3
|
Liu D, Gou L, Bai Y, Fan TP, Zheng X, Cai Y. Converting the 3-quinuclidinone reductase from Agrobacterium tumefaciens into the ethyl 4-chloroacetoacetate reductase by site-directed mutagenesis. Biotechnol Appl Biochem 2021; 69:1428-1437. [PMID: 34148265 DOI: 10.1002/bab.2214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
In this study, the 3-quinuclidinone reductase from Agrobacterium tumefaciens (AtQR) was modified by site-directed mutagenesis. And we further obtained a saturation mutant library in which the residue 197 was mutated. A single-point mutation converted the wild enzyme that originally had no catalytic activity in reduction of ethyl 4-chloroacetoacetate (COBE) into an enzyme with catalytic activity. The results of enzyme activity assays showed that the seven variants could asymmetrically reduce COBE to ethyl (S)-4-chloro-3-hydroxybutyrate ((S)-CHBE) with NADH as coenzyme. In the library, the variant E197N showed higher catalytic efficiency than others. The E197N was optimally active at pH 6.0 and 40°C, and the catalytic efficiency (kcat /Km ) for COBE was 51.36 s-1 ·mM-1 . This study showed that the substrate specificity of AtQR could be changed through site-directed mutagenesis at the residue 197.
Collapse
Affiliation(s)
- Di Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Linbo Gou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shanxi, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
4
|
Li Z, Yang H, Liu J, Huang Z, Chen F. Application of Ketoreductase in Asymmetric Synthesis of Pharmaceuticals and Bioactive Molecules: An Update (2018-2020). CHEM REC 2021; 21:1611-1630. [PMID: 33835705 DOI: 10.1002/tcr.202100062] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 02/05/2023]
Abstract
With the rapid development of genomic DNA sequencing, recombinant DNA expression, and protein engineering, biocatalysis has been increasingly and widely adopted in the synthesis of pharmaceuticals, bioactive molecules, fine chemicals, and agrochemicals. In this review, we have summarized the most recent advances achieved (2018-2020) in the research area of ketoreductase (KRED)-catalyzed asymmetric synthesis of chiral secondary alcohol intermediates to pharmaceuticals and bioactive molecules. In the first part, synthesis of chiral alcohols with one stereocenter through the bioreduction of four different ketone classes, namely acyclic aliphatic ketones, benzyl or phenylethyl ketones, cyclic aliphatic ketones, and aryl ketones, is discussed. In the second part, KRED-catalyzed dynamic reductive kinetic resolution and reductive desymmetrization are presented for the synthesis of chiral alcohols with two contiguous stereocenters.
Collapse
Affiliation(s)
- Zhining Li
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Haidi Yang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Jinyao Liu
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Zedu Huang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Fener Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| |
Collapse
|
5
|
Machado NV, Omori ÁT. Enantioselective reduction of heterocyclic ketones with low level of asymmetry using carrots. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1879795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Naira Vieira Machado
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| | - Álvaro Takeo Omori
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
| |
Collapse
|
6
|
Wu Y, Zhou J, Ni J, Zhu C, Sun Z, Xu G, Ni Y. Engineering an Alcohol Dehydrogenase from
Kluyveromyces polyspora
for Efficient Synthesis of Ibrutinib Intermediate. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yanfei Wu
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Jieyu Zhou
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Jie Ni
- Warshel Institute for Computational Biology, School of Life and Health Science Chinese University of Hong Kong Shenzhen), Shenzhen 518172 People's Republic of China
| | - Cheng Zhu
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Zewen Sun
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Guochao Xu
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| | - Ye Ni
- Key laboratory of industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University, Wuxi 214122 Jiangsu People's Republic of China
| |
Collapse
|
7
|
Qin L, Wu L, Nie Y, Xu Y. Biosynthesis of chiral cyclic and heterocyclic alcohols via CO/C–H/C–O asymmetric reactions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00113b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers the recent progress in various biological approaches applied to the synthesis of enantiomerically pure cyclic and heterocyclic alcohols through CO/C–H/C–O asymmetric reactions.
Collapse
Affiliation(s)
- Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education
- Jiangnan University
- Wuxi 214122
- China
- International Joint Research Laboratory for Brewing Microbiology and Applied Enzymology at Jiangnan University
| |
Collapse
|
8
|
Ten years of progress in the synthesis of six-membered N-heterocycles from alkynes and nitrogen sources. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130876] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|