1
|
Song M, Zhang J, Shen K, Hu Y, Shen W, Tang S, Lee HK. Application of smart-responsive hydrogels in nucleic acid and nucleic acid-based target sensing: A review. Biosens Bioelectron 2025; 267:116803. [PMID: 39316868 DOI: 10.1016/j.bios.2024.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/24/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
In recent years, nucleic acid-related sensing and detection have become essential in clinical diagnostics, treatment and genotyping, especially in connection with the Human Genome Project and the COVID-19 pandemic. Many traditional nucleic acid-related sensing strategies have been employed in analytical chemistry, including fluorescence, colorimetric and chemiluminescence methods. However, their key limitation is the lack of understanding of the interaction during analysis, particularly at the 3D matrix level close to biological tissue. To address this issue, smart-responsive hydrogels are increasingly used in biosensing due to their hydrophilic and biocompatible properties. By combining smart-responsive hydrogels with traditional nucleic acid-related sensing, biological microenvironments can be mimicked, and targets can be easily accessed and diffused, making them ideal for nucleic acid sensing. This review focuses on utilizing smart-responsive hydrogels for nucleic acid-related sensing and detection, including nucleic acid detection, other nucleic acid-based analyte detection and nucleic acid-related sensing platforms applying nucleic acid as sensing tools in hydrogels. Additionally, the analytical mechanisms of smart-responsive hydrogels with the combination of various detection platforms such as optical and electrochemical techniques are described. The limitations of using smart-responsive hydrogels in nucleic acid-related sensing and proposed possible solutions are also discussed. Lastly, the future challenge of smart-responsive hydrogels in nucleic acid-related sensing is explored. Smart-responsive hydrogels can be used as biomimetic materials to simulate the extracellular matrix, achieve biosensing, and exhibit great potential in nucleic acid-related sensing. They serve as a valuable complement to traditional detection and analytical methods.
Collapse
Affiliation(s)
- Meiqi Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Ke Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Yaxue Hu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China.
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, PR China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
2
|
Li Z, Xu X, Wang D, Jiang X. Recent advancements in nucleic acid detection with microfluidic chip for molecular diagnostics. Trends Analyt Chem 2023; 158:116871. [PMID: 36506265 PMCID: PMC9721164 DOI: 10.1016/j.trac.2022.116871] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The coronavirus disease 2019 (COVID-19) has extensively promoted the application of nucleic acid testing technology in the field of clinical testing. The most widely used polymerase chain reaction (PCR)-based nucleic acid testing technology has problems such as complex operation, high requirements of personnel and laboratories, and contamination. The highly miniaturized microfluidic chip provides an essential tool for integrating the complex nucleic acid detection process. Various microfluidic chips have been developed for the rapid detection of nucleic acid, such as amplification-free microfluidics in combination with clustered regularly interspaced short palindromic repeats (CRISPR). In this review, we first summarized the routine process of nucleic acid testing, including sample processing and nucleic acid detection. Then the typical microfluidic chip technologies and new research advances are summarized. We also discuss the main problems of nucleic acid detection and the future developing trend of the microfluidic chip.
Collapse
|
3
|
Adampourezare M, Hasanzadeh M, Seidi F. Microfluidic assisted recognition of miRNAs towards point-of-care diagnosis: Technical and analytical overview towards biosensing of short stranded single non-coding oligonucleotides. Biomed Pharmacother 2022; 153:113365. [PMID: 35785705 DOI: 10.1016/j.biopha.2022.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022] Open
Abstract
MiRNAs are short stranded single non-coding oligonucleotides that play an important role in regulating gene expression. MiRNAs are stable in RNase enriched environments such as human body fluids and their dysregulation or abnormal abundance in human body fluids as a diagnostic biomarker has been associated with several diseases. Due to the low concentration of miRNAs, it is difficult to detect using interactive methods (ideal detection limit is femtomolar range). However, clinicians lack sensitive and reliable methods for quantifying miRNA. Microfluidic devices integrated with electrochemical, optical (fluorometric, SERs, FRET, colorimetric), electrochemiluminescence and photoelectrochemical signal readout led to development innovative diagnostic device test, can probably overcome the limitations of the traditional methods. In the present review, microfluid methods for the sensitive and selective recognition of miRNA in various biological matrices are surveyed. Also, advantages and limitation of recognition methods on the performance and efficiency of microfluidic based biosensing of miRNAs are critically investigated. Finally, the future perspectives on the diagnosis of disease based on microfluidic analysis of miRNAs are provided.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Budharaju H, Zennifer A, Sethuraman S, Paul A, Sundaramurthi D. Designer DNA biomolecules as a defined biomaterial for 3D bioprinting applications. MATERIALS HORIZONS 2022; 9:1141-1166. [PMID: 35006214 DOI: 10.1039/d1mh01632f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA has excellent features such as the presence of functional and targeted molecular recognition motifs, tailorability, multifunctionality, high-precision molecular self-assembly, hydrophilicity, and outstanding biocompatibility. Due to these remarkable features, DNA has emerged as a leading next-generation biomaterial of choice to make hydrogels by self-assembly. In recent times, novel routes for the chemical synthesis of DNA, advances in tailorable designs, and affordable production ways have made DNA as a building block material for various applications. These advanced features have made researchers continuously explore the interesting properties of pure and hybrid DNA for 3D bioprinting and other biomedical applications. This review article highlights the topical advancements in the use of DNA as an ideal bioink for the bioprinting of cell-laden three-dimensional tissue constructs for regenerative medicine applications. Various bioprinting techniques and emerging design approaches such as self-assembly, nucleotide sequence, enzymes, and production cost to use DNA as a bioink for bioprinting applications are described. In addition, various types and properties of DNA hydrogels such as stimuli responsiveness and mechanical properties are discussed. Further, recent progress in the applications of DNA in 3D bioprinting are emphasized. Finally, the current challenges and future perspectives of DNA hydrogels in 3D bioprinting and other biomedical applications are discussed.
Collapse
Affiliation(s)
- Harshavardhan Budharaju
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Allen Zennifer
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Swaminathan Sethuraman
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| | - Arghya Paul
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B9, Canada
| | - Dhakshinamoorthy Sundaramurthi
- Tissue Engineering & Additive Manufacturing (TEAM) Lab, Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), ABCDE Innovation Centre, School of Chemical & Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
5
|
Futai N, Fukazawa Y, Kashiwagi T, Tamaki S, Sakai R, Hogan CA, Murugesan K, Ramachandran A, Banaei N, Santiago JG. A modular and reconfigurable open-channel gated device for the electrokinetic extraction of cell-free DNA assays. Anal Chim Acta 2022; 1200:339435. [DOI: 10.1016/j.aca.2022.339435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/06/2021] [Accepted: 01/02/2022] [Indexed: 11/01/2022]
|
6
|
Zhou X, Cao H, Zeng Y. Microfluidic circulating reactor system for sensitive and automated duplex-specific nuclease-mediated microRNA detection. Talanta 2021; 232:122396. [PMID: 34074392 DOI: 10.1016/j.talanta.2021.122396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022]
Abstract
Duplex-specific nuclease signal amplification (DSNSA) is a promising microRNA (miRNA) quantification strategy. However, existing DSNSA based miRNA detection methods suffer from costly chemical consumptions and require laborious multi-step sample pretreatment that are prone to sample loss and contamination, including total RNA extraction and enrichment. To address these problems, herein we devised a pneumatically automated microfluidic reactor device that integrates both analyte extraction/enrichment and DSNSA-mediated miRNA detection in one streamlined analysis workflow. Two flow circulation strategies were investigated to determine the effects of flow conditions on the kinetics of on-chip DSNSA reaction in a bead-packed microreactor. With the optimized workflow, we demonstrated rapid, robust on-chip detection of miR-21 with a limit-of-detection of 35 amol, while greatly reducing the consumption of DSN enzyme to 0.1 U per assay. Therefore, this microfluidic system provides a useful tool for many applications, including clinical diagnosis.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Hongmei Cao
- Department of Chemistry, University of Kansas, Lawrence, KS, 66045, USA
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA; University of Florida Health Cancer Center, Gainesville, FL, 32610, USA.
| |
Collapse
|
7
|
Nouwairi RL, O'Connell KC, Gunnoe LM, Landers JP. Microchip Electrophoresis for Fluorescence-Based Measurement of Polynucleic Acids: Recent Developments. Anal Chem 2020; 93:367-387. [PMID: 33351599 DOI: 10.1021/acs.analchem.0c04596] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Renna L Nouwairi
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Killian C O'Connell
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Leah M Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States
| | - James P Landers
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22903, United States.,Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, Virginia 22903, United States.,Department of Pathology, University of Virginia Health Science Center, Charlottesville, Virginia 22903, United States
| |
Collapse
|
8
|
Gao Z, Golland B, Tronci G, Thornton PD. A redox-responsive hyaluronic acid-based hydrogel for chronic wound management. J Mater Chem B 2019; 7:7494-7501. [PMID: 31710328 DOI: 10.1039/c9tb01683j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymer-based hydrogels have been widely applied for chronic wound therapeutics, due to their well-acclaimed wound exudate management capability. At the same time, there is still an unmet clinical need for simple wound diagnostic tools to assist clinical decision-making at the point of care and deliver on the vision of patient-personalised wound management. To explore this challenge, we present a one-step synthetic strategy to realise a redox-responsive, hyaluronic acid (HA)-based hydrogel that is sensitive to wound environment-related variations in glutathione (GSH) concentration. By selecting aminoethyl disulfide (AED) as a GSH-sensitive crosslinker and considering GSH concentration variations in active and non-self-healing wounds, we investigated the impact of GSH-induced AED cleavage on hydrogel dimensions, aiming to build GSH-size relationships for potential point-of-care wound diagnosis. The hydrogel was also found to be non-cytotoxic and aided L929 fibroblast growth and proliferation over seven days in vitro. Such a material offers a very low-cost tool for the visual detection of a target analyte that varies dependent on the status of the cells and tissues (wound detection), and may be further exploited as an implant for fibroblast growth and tissue regeneration (wound repair).
Collapse
Affiliation(s)
- Ziyu Gao
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK. and Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, UK.
| | - Ben Golland
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, UK.
| | - Giuseppe Tronci
- Biomaterials and Tissue Engineering Research Group, School of Dentistry, St. James's University Hospital, University of Leeds, UK. and Clothworkers' Centre for Textile Materials Innovation for Healthcare, School of Design, University of Leeds, UK
| | - Paul D Thornton
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|