1
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
2
|
Wang S, Liu Q, Li L, Urban MW. Recent Advances in Stimuli-Responsive Commodity Polymers. Macromol Rapid Commun 2021; 42:e2100054. [PMID: 33749047 DOI: 10.1002/marc.202100054] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Indexed: 12/14/2022]
Abstract
Known for their adaptability to surroundings, capability of transport control of molecules, or the ability of converting one type of energy to another as a result of external or internal stimuli, responsive polymers play a significant role in advancing scientific discoveries that may lead to an array of diverge applications. This review outlines recent advances in the developments of selected commodity polymers equipped with stimuli-responsiveness to temperature, pH, ionic strength, enzyme or glucose levels, carbon dioxide, water, redox agents, electromagnetic radiation, or electric and magnetic fields. Utilized diverse applications ranging from drug delivery to biosensing, dynamic structural components to color-changing coatings, this review focuses on commodity acrylics, epoxies, esters, carbonates, urethanes, and siloxane-based polymers containing responsive elements built into their architecture. In the context of stimuli-responsive chemistries, current technological advances as well as a critical outline of future opportunities and applications are also tackled.
Collapse
Affiliation(s)
- Siyang Wang
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Qianhui Liu
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Lei Li
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Marek W Urban
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
3
|
Domiński A, Konieczny T, Duale K, Krawczyk M, Pastuch-Gawołek G, Kurcok P. Stimuli-Responsive Aliphatic Polycarbonate Nanocarriers for Tumor-Targeted Drug Delivery. Polymers (Basel) 2020; 12:E2890. [PMID: 33276597 PMCID: PMC7761607 DOI: 10.3390/polym12122890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles based on amphiphilic copolymers with tunable physicochemical properties can be used to encapsulate delicate pharmaceutics while at the same time improving their solubility, stability, pharmacokinetic properties, reducing immune surveillance, or achieving tumor-targeting ability. Those nanocarriers based on biodegradable aliphatic polycarbonates are a particularly promising platform for drug delivery due to flexibility in the design and synthesis of appropriate monomers and copolymers. Current studies in this field focus on the design and the synthesis of new effective carriers of hydrophobic drugs and their release in a controlled manner by exogenous or endogenous factors in tumor-specific regions. Reactive groups present in aliphatic carbonate copolymers, undergo a reaction under the action of a stimulus: e.g., acidic hydrolysis, oxidation, reduction, etc. leading to changes in the morphology of nanoparticles. This allows the release of the drug in a highly controlled manner and induces a desired therapeutic outcome without damaging healthy tissues. The presented review summarizes the current advances in chemistry and methods for designing stimuli-responsive nanocarriers based on aliphatic polycarbonates for controlled drug delivery.
Collapse
Affiliation(s)
- Adrian Domiński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| | - Tomasz Konieczny
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| | - Khadar Duale
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| | - Monika Krawczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (M.K.); (G.P.-G.)
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland; (M.K.); (G.P.-G.)
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Piotr Kurcok
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Skłodowskiej St, 41-819 Zabrze, Poland; (A.D.); (T.K.); (K.D.)
| |
Collapse
|
4
|
Das T, Singha D, Nandi M. The big effect of a small change: formation of CuO nanoparticles instead of covalently bound Cu(ii) over functionalized mesoporous silica and its impact on catalytic efficiency. Dalton Trans 2020; 49:10138-10155. [PMID: 32662469 DOI: 10.1039/d0dt01922d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Two different heterogeneous catalysts, one with Cu(ii) covalently bonded to functionalized mesoporous silica (FMS-Cu(II)) and another with CuO nanoparticles immobilized over the same silica (FMS-CuO-np), have been synthesized by a common route but with a minor alteration in the sequence of addition of reagents. It is interesting to find that by merely changing the order of the addition of reagents Cu(ii) can be incorporated into the framework in two different forms. In one case Cu(ii) binds to the N and O donor centers present in the functionalized material whereas in the other case CuO nanoparticles are generated in situ. The materials have been thoroughly characterized by powder X-ray diffraction, nitrogen adsorption/desorption, transmission electron microscopy, thermal analysis, FT-IR spectroscopy, solid state MAS-NMR spectroscopy and atomic absorption spectrophotometric studies. The synthesized products have been examined for their catalytic efficiencies in the oxidation of olefins, as a model case. Styrene, α-methyl styrene, cyclohexene, trans-stilbene and cyclooctene have been used as substrates in the presence of tert-butyl hydroperoxide as the oxidant in acetonitrile medium under mild conditions. The products of the catalytic reactions have been identified and estimated by gas chromatography and gas chromatography-mass spectrometry. The rate of conversion of the substrates for both the catalysts is high and the selectivity is also good. But from comparative studies, it is found that FMS-CuO-np which contains CuO nanoparticles shows better efficiency than FMS-Cu(II). The catalysts have been recycled for five catalytic cycles without showing much decrease in their catalytic activity.
Collapse
Affiliation(s)
- Trisha Das
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India.
| | | | | |
Collapse
|
5
|
Wu WX. Lipase-catalyzed synthesis and post-polymerization modification of new fully bio-based poly(hexamethylene γ-ketopimelate) and poly(hexamethylene γ-ketopimelate- co-hexamethylene adipate) copolyesters. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
A novel full bio-based ketone-containing aliphatic polyester was prepared by enzyme-catalyzed polycondensation of diethyl γ-ketopimelate (DEK) with 1,6-hexanediol (HDO) using immobilized lipase B from Candida antarctica (CALB). The influences of polymerization conditions such as temperature, time, enzyme amount, and solvent amount on the molecular weight of poly(hexamethylene γ-ketopimelate) (PHK) were investigated. New fully bio-based poly(hexamethylene γ-ketopimelate-co-hexamethylene adipate) (poly(HK-co-HA)) copolymers with narrow polydispersity and well-defined composition were synthesized by copolymerization of DEK, HDO, and diethyl adipate. The structures of PHK and poly(HK-co-HA) copolymers were characterized by nuclear magnetic resonance, and their thermal characterization was examined by thermogravimetric analysis and differential scanning calorimetry. The degradation of PHK and poly(HK-co-HA) copolymers was studied. The post-polymerization modification of these polyketoesters via oxime click chemistry was further demonstrated.
Collapse
Affiliation(s)
- Wan-Xia Wu
- College of Pharmacy and Biological Engineering , Chengdu University , Chengdu 610106 , China
| |
Collapse
|
6
|
Preparation of fluorophore-tagged polymeric drug delivery vehicles with multiple biological stimuli-triggered drug release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110358. [DOI: 10.1016/j.msec.2019.110358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 02/04/2023]
|
7
|
Yan B, Hou J, Wei C, Xiao Y, Lang M, Huang F. Facile preparation of long-chain aliphatic polycarbonates containing block copolycarbonates via one-pot sequential organic catalyzed polymerization of macrocyclic carbonates and trimethylene carbonates. Polym Chem 2020. [DOI: 10.1039/d0py00031k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A universal and effective approach was reported to synthesize block copolycarbonates containing long-chain aliphatic polycarbonates and PTMC segments using the ROP differences between macrocyclic and small cyclic carbonates with TBD as catalyst.
Collapse
Affiliation(s)
- Bingkun Yan
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Jiaqian Hou
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Chao Wei
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Yan Xiao
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Meidong Lang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Farong Huang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
8
|
Hu J, Xu Y, Zhang Y. Amphiphilic random polycarbonate self-assemble into GSH/pH dual responsive micelle-like aggregates in water. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Yan B, Hou J, Wei C, Xiao Y, Lang M, Huang F. Synthesis of main chain sulfur-containing aliphatic polycarbonates by organocatalytic ring-opening polymerization of macrocyclic carbonates. Polym Chem 2019. [DOI: 10.1039/c9py01205b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first application of organocatalysts is reported to achieve highly active and living ring-opening polymerization (ROP) of thioether-based macrocyclic carbonates for preparing well-defined main chain thioether functional APCs.
Collapse
Affiliation(s)
- Bingkun Yan
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Jiaqian Hou
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Chao Wei
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Yan Xiao
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Meidong Lang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Farong Huang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|