1
|
Garetto B, Cao N, Finelli V, Aunan E, Signorile M, Olsbye U, Bordiga S, Nova A, Borfecchia E. Pinpointing Cu-Coordination Motifs in Bio-Inspired MOFs by Combining DFT-Assisted XAS Analysis and Multivariate Curve Resolution. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2025; 129:3570-3582. [PMID: 40008198 PMCID: PMC11848919 DOI: 10.1021/acs.jpcc.4c08029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025]
Abstract
In recent years, X-ray absorption spectroscopy (XAS) has emerged as an essential technique for investigating the structure and composition of heterogeneous catalysts, providing valuable insights into the nature of active sites within these systems. However, the average nature of the XAS signal, inherently merged over all the absorber-containing species forming during in situ/operando experiments, often complicates the interpretation of the data. Nonetheless, advanced analysis methods have been developed to address this problem. In particular, herein we employed in situ XAS spectroscopy together with multivariate curve resolution-alternating least squares (MCR-ALS) and wavelet transform (WT) analysis to monitor the evolution of distinct Cu species in histidine-modified Cu-UiO-66 MOFs and to obtain detailed structural insights about the Cu sites. A novel approach adopted in this work was the application of density functional theory (DFT)-assisted extended X-ray absorption fine structure (EXAFS) fitting to quantitatively refine the local structure of the MCR-derived pure Cu species. This approach revealed the preferential redox activity of CuII ions coordinated within the defective Zr clusters of the MOF, compared to CuII ions bound to both the histidine molecule and the defective site during a standard redox reaction protocol.
Collapse
Affiliation(s)
- Beatrice Garetto
- Department
of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G. Quarello 15/A, I-10135, and Via P. Giuria
7, I-10125 Turin, Italy
| | - Ning Cao
- SMN
Centre for Material Science and Nanotechnology, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Valeria Finelli
- Department
of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G. Quarello 15/A, I-10135, and Via P. Giuria
7, I-10125 Turin, Italy
- University
School of Advanced Studies, IUSS Pavia, Palazzo del Broletto, P.zza della Vittoria 15, I-27100 Pavia, Italy
| | - Erlend Aunan
- SMN
Centre for Material Science and Nanotechnology, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Matteo Signorile
- Department
of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G. Quarello 15/A, I-10135, and Via P. Giuria
7, I-10125 Turin, Italy
| | - Unni Olsbye
- SMN
Centre for Material Science and Nanotechnology, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Silvia Bordiga
- Department
of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G. Quarello 15/A, I-10135, and Via P. Giuria
7, I-10125 Turin, Italy
| | - Ainara Nova
- SMN
Centre for Material Science and Nanotechnology, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
- Hylleraas
Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| | - Elisa Borfecchia
- Department
of Chemistry, NIS and INSTM Reference Centre, Università di Torino, Via G. Quarello 15/A, I-10135, and Via P. Giuria
7, I-10125 Turin, Italy
| |
Collapse
|
2
|
Zhang Y, Du J, Shan Y, Wang F, Liu J, Wang M, Liu Z, Yan Y, Xu G, He G, Shi X, Lian Z, Yu Y, Shan W, He H. Toward synergetic reduction of pollutant and greenhouse gas emissions from vehicles: a catalysis perspective. Chem Soc Rev 2025; 54:1151-1215. [PMID: 39687940 DOI: 10.1039/d4cs00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
It is a great challenge for vehicles to satisfy the increasingly stringent emission regulations for pollutants and greenhouse gases. Throughout the history of the development of vehicle emission control technology, catalysts have always been in the core position of vehicle aftertreatment. Aiming to address the significant demand for synergistic control of pollutants and greenhouse gases from vehicles, this review provides a panoramic view of emission control technologies and key aftertreatment catalysts for vehicles using fossil fuels (gasoline, diesel, and natural gas) and carbon-neutral fuels (hydrogen, ammonia, and green alcohols). Special attention will be given to the research advancements in catalysts, including three-way catalysts (TWCs), NOx selective catalytic reduction (SCR) catalysts, NOx storage-reduction (NSR) catalysts, diesel oxidation catalysts (DOCs), soot oxidation catalysts, ammonia slip catalysts (ASCs), methane oxidation catalysts (MOCs), N2O abatement catalysts (DeN2O), passive NOx adsorbers (PNAs), and cold start catalysts (CSCs). The main challenges for industrial applications of these catalysts, such as insufficient low-temperature activity, product selectivity, hydrothermal stability, and poisoning resistance, will be examined. In addition, the future development of synergistic control of vehicle pollutants and greenhouse gases will be discussed from a catalysis perspective.
Collapse
Affiliation(s)
- Yan Zhang
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Jinpeng Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yulong Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Fei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jingjing Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Meng Wang
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Zhi Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yong Yan
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Guangyan Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guangzhi He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiaoyan Shi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhihua Lian
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yunbo Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Wenpo Shan
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Zhejiang Key Laboratory of Pollution Control for Port-Petrochemical Industry, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315800, China.
| | - Hong He
- Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
3
|
Negri C, Usberti N, Contaldo G, Bracconi M, Nova I, Maestri M, Tronconi E. Quantitative Kinetic Insights from Operando-UV/Vis Spectroscopy: An Application to NH 3-SCR of NOx on Cu-CHA Catalysts. Angew Chem Int Ed Engl 2024; 63:e202408328. [PMID: 38829015 DOI: 10.1002/anie.202408328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
We employ UV/Vis Diffuse Reflectance spectroscopy directly coupled with a packed bed flow reactor to extract quantitative kinetic information. We use as a show-case the CuII/CuI redox dynamics during the reduction half cycle of the NH3-Selective Catalytic Reduction (SCR) on Cu-CHA catalysts. Our measurements enable quantification of the fraction of oxidized Cu, reconstructed by Multivariate Curve Resolution (MCR) together with monitoring of the gas-phase evolution during the reaction. These data both on the dynamics of the gas-phase and of the active site oxidation state have been used to assess the reduction half cycle rate equation and estimate the rate constant. Our results in terms of reaction orders and kinetic constant are in line with previous findings in the literature. Overall, our results demonstrate that the combined analysis of the UV spectra and of the gas-phase dynamics provides converging and unparalleled kinetic insight: this approach effectively resolves ambiguities concerning RHC kinetics and mechanism. More in general, this work provides evidence that operando spectroscopy can be used to extract quantitative kinetic information on catalytic cycles.
Collapse
Affiliation(s)
- Chiara Negri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Nicola Usberti
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Gabriele Contaldo
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Mauro Bracconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Matteo Maestri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156, Milano, Italy
| |
Collapse
|
4
|
Fu Y, Ding W, Lei H, Sun Y, Du J, Yu Y, Simon U, Chen P, Shan Y, He G, He H. Spatial Distribution of Brønsted Acid Sites Determines the Mobility of Reactive Cu Ions in the Cu-SSZ-13 Catalyst during the Selective Catalytic Reduction of NO x with NH 3. J Am Chem Soc 2024; 146:11141-11151. [PMID: 38600025 DOI: 10.1021/jacs.3c13725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The formation of dimer-Cu species, which serve as the active sites of the low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR), relies on the mobility of CuI species in the channels of the Cu-SSZ-13 catalysts. Herein, the key role of framework Brønsted acid sites in the mobility of reactive Cu ions was elucidated via a combination of density functional theory calculations, in situ impedance spectroscopy, and in situ diffuse reflectance ultraviolet-visible spectroscopy. When the number of framework Al sites decreases, the Brønsted acid sites decrease, leading to a systematic increase in the diffusion barrier for [Cu(NH3)2]+ and less formation of highly reactive dimer-Cu species, which inhibits the low-temperature NH3-SCR reactivity and vice versa. When the spatial distribution of Al sites is uneven, the [Cu(NH3)2]+ complexes tend to migrate from an Al-poor cage to an Al-rich cage (e.g., cage with paired Al sites), which effectively accelerates the formation of dimer-Cu species and hence promotes the SCR reaction. These findings unveil the mechanism by which framework Brønsted acid sites influence the intercage diffusion and reactivity of [Cu(NH3)2]+ complexes in Cu-SSZ-13 catalysts and provide new insights for the development of zeolite-based catalysts with excellent SCR activity by regulating the microscopic spatial distribution of framework Brønsted acid sites.
Collapse
Affiliation(s)
- Yu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenqing Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Huarong Lei
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Yu Sun
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jinpeng Du
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Aachen 52074, Germany
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Bjerregaard JD, Han J, Creaser D, Olsson L, Grönbeck H. Interpretation of H 2-TPR from Cu-CHA Using First-Principles Calculations. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:4525-4534. [PMID: 38533243 PMCID: PMC10962680 DOI: 10.1021/acs.jpcc.3c07998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Temperature-programmed reduction and oxidation are used to obtain information on the presence and abundance of different species in complex catalytic materials. The interpretation of the temperature-programmed reaction profiles is, however, often challenging. One example is H2 temperature-programmed reduction (H2-TPR) of Cu-chabazite (Cu-CHA), which is a material used for ammonia assisted selective catalytic reduction of NOx (NH3-SCR). The TPR profiles of Cu-CHA consist generally of three main peaks. A peak at 220 °C is commonly assigned to ZCuOH, whereas peaks at 360 and 500 °C generally are assigned to Z2Cu, where Z represents an Al site. Here, we analyze H2-TPR over Cu-CHA by density functional theory calculations, microkinetic modeling, and TPR measurements of samples pretreated to have a dominant Cu species. We find that H2 can react with Cu ions in oxidation state +2, whereas adsorption on Cu ions in +1 is endothermic. Kinetic modeling of the TPR profiles suggests that the 220 °C peak can be assigned to Z2CuOCu and ZCuOH, whereas the peaks at higher temperatures can be assigned to paired Z2Cu and Z2CuHOOHCu species (360 °C) or paired Z2Cu and Z2CuOOCu (500 °C). The results are in good agreement with the experiments and facilitate the interpretation of future TPR experiments.
Collapse
Affiliation(s)
- Joachim D. Bjerregaard
- Department
of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Joonsoo Han
- Chemical
Engineering and Competence Centre for Catalysis, Chalmers University of Technology, SE 412 96 Göteborg, Sweden
| | - Derek Creaser
- Chemical
Engineering and Competence Centre for Catalysis, Chalmers University of Technology, SE 412 96 Göteborg, Sweden
| | - Louise Olsson
- Chemical
Engineering and Competence Centre for Catalysis, Chalmers University of Technology, SE 412 96 Göteborg, Sweden
| | - Henrik Grönbeck
- Department
of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
6
|
Nasello ND, Usberti N, Iacobone U, Gramigni F, Hu W, Liu S, Nova I, Gao X, Tronconi E. Dual-Site RHC and OHC Transient Kinetics Predict Low-T Standard SCR Steady-State Rates over a Cu-CHA Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Nicole Daniela Nasello
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Nicola Usberti
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Umberto Iacobone
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Federica Gramigni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Wenshuo Hu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, 310027Hangzhou, China
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, 310027Hangzhou, China
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, 310027Hangzhou, China
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156Milano, Italy
| |
Collapse
|
7
|
Research Progress on Sulfur Deactivation and Regeneration over Cu-CHA Zeolite Catalyst. Catalysts 2022. [DOI: 10.3390/catal12121499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Benefiting from the exceptional selective catalytic reduction of NOx with ammonia (NH3-SCR) activity, excellent N2 selectivity, and superior hydrothermal durability, the Cu2+-exchanged zeolite catalyst with a chabazite structure (Cu-CHA) has been considered the predominant SCR catalyst in nitrogen oxide (NOx) abatement. However, sulfur poisoning remains one of the most significant deterrents to the catalyst in real applications. This review summarizes the NH3-SCR reaction mechanism on Cu-CHA, including the active sites and the nature of hydrothermal aging resistance. On the basis of the NH3-SCR reaction mechanism, the review gives a comprehensive summary of sulfate species, sulfate loading, emitted gaseous composition, and the impact of exposure temperature/time on Cu-CHA. The nature of the regeneration of sulfated catalysts is also covered in this review. The review gives a valuable summary of new insights into the matching between the design of NH3-SCR activity and sulfur resistance, highlighting the opportunities and challenges presented by Cu-CHA. Guidance for future sulfur poisoning diagnosis, effective regeneration strategies, and a design for an efficient catalyst for the aftertreatment system (ATS) are proposed to minimize the deterioration of NOx abatement in the future. Finally, we call for more attention to be paid to the effects of PO43- and metal co-cations with sulfur in the ATS.
Collapse
|
8
|
Signorile M, Borfecchia E, Bordiga S, Berlier G. Influence of ion mobility on the redox and catalytic properties of Cu ions in zeolites. Chem Sci 2022; 13:10238-10250. [PMID: 36277636 PMCID: PMC9473501 DOI: 10.1039/d2sc03565k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 01/09/2023] Open
Abstract
This contribution aims at analysing the current understanding about the influence of Al distribution, zeolite topology, ligands/reagents and oxidation state on ions mobility in Cu-zeolites, and its relevance toward reactivity of the metal sites. The concept of Cu mobilization has been originally observed in the presence of ammonia, favouring the activation of oxygen by formation of NH3 oxo-bridged complexes in zeolites and opening a new perspective about the chemistry in single-site zeolite-based catalysts, in particular in the context of the NH3-mediated Selective Catalytic Reduction of NO x (NH3-SCR) processes. A different mobility of bare Cu+/Cu2+ ions has been documented too, showing for Cu+ a better mobilization than for Cu2+ also in absence of ligands. These concepts can have important consequences for the formation of Cu-oxo species, active and selective in other relevant reactions, such as the direct conversion of methane to methanol. Here, assessing the structure, the formation pathways and reactivity of Cu-oxo mono- or multimeric moieties still represents a challenging playground for chemical scientists. Translating the knowledge about Cu ions mobility and redox properties acquired in the context of NH3-SCR reaction into the field of direct conversion of methane to methanol can have important implications for a better understanding of transition metal ions redox properties in zeolites and for an improved design of catalysts and catalytic processes.
Collapse
Affiliation(s)
- Matteo Signorile
- Department of Chemistry and NIS Centre, Università di Torino Via P. Giuria 7 Torino 10125 Italy
| | - Elisa Borfecchia
- Department of Chemistry and NIS Centre, Università di Torino Via P. Giuria 7 Torino 10125 Italy
| | - Silvia Bordiga
- Department of Chemistry and NIS Centre, Università di Torino Via P. Giuria 7 Torino 10125 Italy
| | - Gloria Berlier
- Department of Chemistry and NIS Centre, Università di Torino Via P. Giuria 7 Torino 10125 Italy
| |
Collapse
|
9
|
Iacobone U, Nova I, Tronconi E, Villamaina R, Ruggeri MP, Collier J, Thompsett D. Appraising Multinuclear Cu 2+ Structure Formation in Cu-CHA SCR Catalysts via Low-T Dry CO Oxidation with Modulated NH 3 Solvation. ChemistryOpen 2022; 11:e202200186. [PMID: 36101494 PMCID: PMC9471058 DOI: 10.1002/open.202200186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Cu2+ ions (ZCu2+ (OH)- , Z2 Cu2+ ) are regarded as the NH3 -SCR (SCR=selective catalytic reduction) active site precursors of Cu-exchanged chabazite (CHA) which is among the best available catalysts for the abatement of NOx from Diesel engines. During SCR operation, copper sites undergo reduction (Reduction half-cycle, RHC: Cu2+ →Cu+ ) and oxidation (Oxidaton half-cycle, OHC: Cu+ →Cu2+ ) semi cycles, whose associated mechanisms are still debated. We recently proposed CO oxidation to CO2 as an effective method to probe the formation of multinuclear Cu2+ species as the initial low-T RHC step. NH3 pre-adsorption determined a net positive effect on the CO2 production: by solvating ZCu2+ (OH)- ions, ammonia enhances their mobility, favoring their coupling to form binuclear complexes which can catalyze the reaction. In this work, dry CO oxidation experiments, preceded by modulated NH3 feed phases, clearly showed that CO2 production enhancements are correlated with the extent of Cu2+ ion solvation by NH3 . Analogies with the SCR-RHC phase are evidenced: the NH3 -Cu2+ presence ensures the characteristic dynamics associated with a second order kinetic dependence on the oxidized Cu2+ fraction. These findings provide novel information on the NH3 role in the low-T SCR redox mechanism and on the nature of the related active catalyst sites.
Collapse
Affiliation(s)
- Umberto Iacobone
- Laboratory of Catalysis and Catalytic Processes (LCCP)Dipartimento di EnergiaPolitecnico di MilanoVia Giuseppe La Masa 3420156MilanItaly
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes (LCCP)Dipartimento di EnergiaPolitecnico di MilanoVia Giuseppe La Masa 3420156MilanItaly
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes (LCCP)Dipartimento di EnergiaPolitecnico di MilanoVia Giuseppe La Masa 3420156MilanItaly
| | - Roberta Villamaina
- Emission Control DepartmentJohnson Matthey Technology CentreBlounts Court Road, Sonning CommonReadingRG4 9NHUK
| | - Maria Pia Ruggeri
- Emission Control DepartmentJohnson Matthey Technology CentreBlounts Court Road, Sonning CommonReadingRG4 9NHUK
| | - Jillian Collier
- Emission Control DepartmentJohnson Matthey Technology CentreBlounts Court Road, Sonning CommonReadingRG4 9NHUK
| | - David Thompsett
- Emission Control DepartmentJohnson Matthey Technology CentreBlounts Court Road, Sonning CommonReadingRG4 9NHUK
| |
Collapse
|
10
|
Wu Y, Ma Y, Wang Y, Rappé KG, Washton NM, Wang Y, Walter ED, Gao F. Rate Controlling in Low-Temperature Standard NH 3-SCR: Implications from Operando EPR Spectroscopy and Reaction Kinetics. J Am Chem Soc 2022; 144:9734-9746. [PMID: 35605129 DOI: 10.1021/jacs.2c01933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of seven Cu/SSZ-13 catalysts with Si/Al = 6.7 are used to elucidate key rate-controlling factors during low-temperature standard ammonia-selective catalytic reduction (NH3-SCR), via a combination of SCR kinetics and operando electron paramagnetic resonance (EPR) spectroscopy. Strong Cu-loading-dependent kinetics, with Cu atomic efficiency increasing nearly by an order of magnitude, is found when per chabazite cage occupancy for Cu ion increases from ∼0.04 to ∼0.3. This is due mainly to the release of intercage Cu transfer constraints that facilitates the redox chemistry, as evidenced from detailed Arrhenius analysis. Operando EPR spectroscopy studies reveal strong connectivity between Cu-ion dynamics and SCR kinetics, based on which it is concluded that under low-temperature steady-state SCR, kinetically most relevant Cu species are those with the highest intercage mobility. Transient binuclear Cu species are mechanistically relevant species, but their splitting and cohabitation are indispensable for low-temperature kinetics.
Collapse
Affiliation(s)
- Yiqing Wu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yue Ma
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yilin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Kenneth G Rappé
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Nancy M Washton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States.,Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Eric D Walter
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99354, United States
| |
Collapse
|
11
|
Molokova A, Borfecchia E, Martini A, Pankin IA, Atzori C, Mathon O, Bordiga S, Wen F, Vennestrøm PNR, Berlier G, Janssens TVW, Lomachenko KA. SO 2 Poisoning of Cu-CHA deNO x Catalyst: The Most Vulnerable Cu Species Identified by X-ray Absorption Spectroscopy. JACS AU 2022; 2:787-792. [PMID: 35557768 PMCID: PMC9088759 DOI: 10.1021/jacsau.2c00053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 05/11/2023]
Abstract
Cu-exchanged chabazite zeolites (Cu-CHA) are effective catalysts for the NH3-assisted selective catalytic reduction of NO (NH3-SCR) for the abatement of NO x emission from diesel vehicles. However, the presence of a small amount of SO2 in diesel exhaust gases leads to a severe reduction in the low-temperature activity of these catalysts. To shed light on the nature of such deactivation, we characterized a Cu-CHA catalyst under well-defined exposures to SO2 using in situ X-ray absorption spectroscopy. By varying the pretreatment procedure prior to the SO2 exposure, we have selectively prepared CuI and CuII species with different ligations, which are relevant for the NH3-SCR reaction. The highest reactivity toward SO2 was observed for CuII species coordinated to both NH3 and extraframework oxygen, in particular for [CuII 2(NH3)4O2]2+ complexes. Cu species without either ammonia or extraframework oxygen ligands were much less reactive, and the associated SO2 uptake was significantly lower. These results explain why SO2 mostly affects the low-temperature activity of Cu-CHA catalysts, since the dimeric complex [CuII 2(NH3)4O2]2+ is a crucial intermediate in the low-temperature NH3-SCR catalytic cycle.
Collapse
Affiliation(s)
- Anastasia
Yu. Molokova
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | - Elisa Borfecchia
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | - Andrea Martini
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
- The
Smart Materials Research Institute, Southern
Federal University, Sladkova
174/28, 344090 Rostov-on-Don, Russia
| | - Ilia A. Pankin
- The
Smart Materials Research Institute, Southern
Federal University, Sladkova
174/28, 344090 Rostov-on-Don, Russia
| | - Cesare Atzori
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Olivier Mathon
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Silvia Bordiga
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | - Fei Wen
- Umicore
AG & Co, Rodenbacher Chaussee 4, 63457 Hanau, Germany
| | | | - Gloria Berlier
- Department
of Chemistry and NIS Centre, University
of Turin, via Giuria
7,10125 Turin, Italy
| | | | - Kirill A. Lomachenko
- European
Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| |
Collapse
|
12
|
Ye X, Oord R, Monai M, Schmidt JE, Chen T, Meirer F, Weckhuysen BM. New insights into the NH 3-selective catalytic reduction of NO over Cu-ZSM-5 as revealed by operando spectroscopy. Catal Sci Technol 2022; 12:2589-2603. [PMID: 35664830 PMCID: PMC9016411 DOI: 10.1039/d1cy02348a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
Abstract
To control diesel vehicle NO x emissions, Cu-exchanged zeolites have been applied in the selective catalytic reduction (SCR) of NO using NH3 as reductant. However, the harsh hydrothermal environment of tailpipe conditions causes irreversible catalyst deactivation. The aggregation of isolated Cu2+ brings about unselective ammonia oxidation along with the main NH3-SCR reaction. An unusual 'dip' shaped NO conversion curve was observed in the steamed zeolite Cu-ZSM-5, resulting from the undesired NH3 oxidation that produced NO. Here we gain further insights into the NH3-SCR reaction and its deactivation by employing operando UV-vis diffuse reflectance spectroscopy (DRS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) on fresh and steamed zeolite Cu-ZSM-5. We found that tetragonally distorted octahedral Cu2+ with associated NH3 preferentially forms during low temperature NH3-SCR (<250 °C) in fresh Cu-ZSM-5. The high coordination number of Cu2+ ensures the availability for high coverage of nitrate intermediates. Whilst in the steamed Cu-ZSM-5, [Cu x (OH)2x-1]+ oligomers/clusters in pseudo-tetrahedral symmetry with coordinated NH3 accumulated during the low-temperature NH3-SCR reaction. These clusters presented a strong adsorption of surface NH3 and nitrates/nitric acid at low temperatures and therefore limited the reaction between surface species in the steamed Cu-ZSM-5. Further release of NH3 with increased reaction temperature favors NH3 oxidation that causes the drop of NO conversion at ∼275 °C. Moreover, competitive adsorption of NH3 and nitrates/nitric acid occurs on shared Lewis-acidic adsorption sites. Prompt removal of surface nitrates/nitric acid by NO avoids the surface blockage and tunes the selectivity by alternating nitrate-nitrite equilibrium. The formation of adsorbed NO2 and HNO x points to the necessity of an acid adsorbent in practical applications. The structural similarity under the NH3-SCR reaction and unselective NH3 oxidation confirmed the entanglement of these two reactions above 250 °C.
Collapse
Affiliation(s)
- Xinwei Ye
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University Tianjin 300350 China.,Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Ramon Oord
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Matteo Monai
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Joel E Schmidt
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Tiehong Chen
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University Tianjin 300350 China
| | - Florian Meirer
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
13
|
Isapour G, Wang A, Han J, Feng Y, Grönbeck H, Creaser D, Olsson L, Skoglundh M, Härelind H. In situ DRIFT studies on N 2O formation over Cu-functionalized zeolites during ammonia-SCR. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00247g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of the zeolite framework structure on the formation of N2O during ammonia-SCR of NOx was studied for three different copper-functionalized zeolite samples, namely Cu-SSZ-13 (CHA), Cu-ZSM-5 (MFI), and Cu-BEA (BEA).
Collapse
Affiliation(s)
- Ghodsieh Isapour
- Department of Chemistry and Chemical Engineering, Division of Applied Chemistry Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, Sweden
| | - Aiyong Wang
- Department of Chemistry and Chemical Engineering, Division of Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, Sweden
| | - Joonsoo Han
- Department of Chemistry and Chemical Engineering, Division of Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, Sweden
| | - Yingxin Feng
- Department of Physics, Division of Chemical Physics, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, Sweden
| | - Henrik Grönbeck
- Department of Physics, Division of Chemical Physics, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, Sweden
| | - Derek Creaser
- Department of Chemistry and Chemical Engineering, Division of Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, Sweden
| | - Louise Olsson
- Department of Chemistry and Chemical Engineering, Division of Chemical Engineering, Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, Sweden
| | - Magnus Skoglundh
- Department of Chemistry and Chemical Engineering, Division of Applied Chemistry Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, Sweden
| | - Hanna Härelind
- Department of Chemistry and Chemical Engineering, Division of Applied Chemistry Competence Centre for Catalysis, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
14
|
Fu Y, He G, Shan Y, Du J, He H. Promotion of the selective catalytic reduction of NOx with NH3 over microporous Cu-SSZ-13 by H2O and OH group at low temperatures: a density functional theory study. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00796g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The successful commercialization of microporous Cu-SSZ-13 catalysts in the selective catalytic reduction (SCR) of NOx with NH3 has attracted extensive attention and debate on the mechanism of their excellent activity...
Collapse
|
15
|
Kiani D, Xi Y, Ottinger N, Liu ZG. Revisiting NH 3–catalyst interactions in Cu-SSZ-13 SCR catalysts: an in situ spectro-kinetics study. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00805j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At low surface coverages, NH3 consumption was found to occur during adsorption at 120 °C over both Cu-SSZ-13, and H-SSZ-13; albeit much faster on Cu-SSZ-13.
Collapse
Affiliation(s)
- Daniyal Kiani
- Cummins Emission Solutions, 1801 US Hwy 51/138, Stoughton, WI, 53589, USA
| | - Yuanzhou Xi
- Cummins Emission Solutions, 1801 US Hwy 51/138, Stoughton, WI, 53589, USA
| | - Nathan Ottinger
- Cummins Emission Solutions, 1801 US Hwy 51/138, Stoughton, WI, 53589, USA
| | - Z. Gerald Liu
- Cummins Emission Solutions, 1801 US Hwy 51/138, Stoughton, WI, 53589, USA
| |
Collapse
|
16
|
Feng Y, Wang X, Janssens TVW, Vennestrøm PNR, Jansson J, Skoglundh M, Grönbeck H. First-Principles Microkinetic Model for Low-Temperature NH 3-Assisted Selective Catalytic Reduction of NO over Cu-CHA. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yingxin Feng
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Xueting Wang
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | - Jonas Jansson
- Volvo Group Trucks Technology, SE-405 08 Göteborg, Sweden
| | - Magnus Skoglundh
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
17
|
Negri C, Martini A, Deplano G, Lomachenko KA, Janssens TVW, Borfecchia E, Berlier G, Bordiga S. Investigating the role of Cu-oxo species in Cu-nitrate formation over Cu-CHA catalysts. Phys Chem Chem Phys 2021; 23:18322-18337. [PMID: 34612374 PMCID: PMC8409503 DOI: 10.1039/d1cp01754c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/16/2021] [Indexed: 12/04/2022]
Abstract
The speciation of framework-interacting CuII sites in Cu-chabazite zeolite catalysts active in the selective catalytic reduction of NOx with NH3 is studied, to investigate the influence of the Al content on the copper structure and their reactivity towards a NO/O2 mixture. To this aim, three samples with similar Cu densities and different Si/Al ratios (5, 15 and 29) were studied using in situ X-ray absorption spectroscopy (XAS), FTIR and diffuse reflectance UV-Vis during pretreatment in O2 followed by the reaction. XAS and UV-Vis data clearly show the main presence of Z2CuII sites (with Z representing a framework negative charge) at a low Si/Al ratio, as predicted. EXAFS wavelet transform analysis showed a non-negligible fraction of proximal Z2CuII monomers, possibly stabilized into two 6-membered rings within the same cage. These sites are not able to form Cu-nitrates by interaction with NO/O2. By contrast, framework-anchored Z[CuII(NO3)] complexes with a chelating bidentate structure are formed in samples with a higher Si/Al ratio, by reaction of NO/O2 with Z[CuII(OH)] sites or structurally similar mono- or multi-copper Zx[CuIIxOy] sites. Linear combination fit (LCF) analysis of the XAS data showed good agreement between the fraction of Z[CuII(OH)]/Zx[CuIIxOy] sites formed during activation in O2 and that of Z[CuII(NO3)] complexes formed by reaction with NO/O2, further confirming the chemical inertia of Z2CuII towards these reactants in the absence of solvating NH3 molecules.
Collapse
Affiliation(s)
- Chiara Negri
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Andrea Martini
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
- The Smart Materials Research Institute, Southern Federal UniversitySladkova 178/24344090 Rostov-on-DonRussia
| | - Gabriele Deplano
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Kirill A. Lomachenko
- European Synchrotron Radiation Facility71 Avenue des Martyrs, CS 4022038043 Grenoble Cedex 9France
| | | | - Elisa Borfecchia
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Gloria Berlier
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| | - Silvia Bordiga
- Department of Chemistry and NIS Centre, University of TurinVia Giuria 7Turin10125 (I)Italy
| |
Collapse
|
18
|
Abstract
The present work is focused on the effect of water on NH3 adsorption over Cu-CHA SCR catalysts. For this purpose, samples characterized by different SAR (SiO2/Al2O3) ratios and Cu loadings were studied under both dry and wet conditions. H2O adversely affects NH3 adsorption on Lewis acid sites (Cu ions) over all the tested catalysts, as indicated by the decreased NH3 desorption at low temperature during TPD. Interestingly, the NH3/Cu ratio, herein regarded as an index for the speciation of Cu cations, fell in the range of 3–4 (in the presence of gaseous NH3) or 1–2 (no gaseous NH3) in dry conditions, in line with the formation of different NH3-solvated Cu species (e.g., [CuII(NH3)4]2+ and [CuII(OH)(NH3)3]+ with gaseous NH3, [Z2CuII(NH3)2]2+ and [ZCuII(OH)(NH3)]+ without gaseous NH3). When H2O was fed to the system, on the contrary, the NH3/Cu ratio was always close to 3 (or 1), while the Brønsted acidity was slightly increased. These results are consistent both with competition between H2O and NH3 for adsorption on Lewis sites and with the hydrolysis of a fraction of Z2CuII species into ZCuIIOH.
Collapse
|
19
|
Xue H, Guo X, Meng T, Guo Q, Mao D, Wang S. Cu-ZSM-5 Catalyst Impregnated with Mn–Co Oxide for the Selected Catalytic Reduction of NO: Physicochemical Property–Catalytic Activity Relationship and In Situ DRIFTS Study for the Reaction Mechanism. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongyan Xue
- Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Xiaoming Guo
- Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Tao Meng
- Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Qiangsheng Guo
- Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Dongsen Mao
- Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Song Wang
- Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
20
|
Direct measurement of enthalpy and entropy changes in NH
3
promoted O
2
activation over Cu−CHA at low temperature. ChemCatChem 2021. [DOI: 10.1002/cctc.202100253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Gramigni F, Nasello ND, Usberti N, Iacobone U, Selleri T, Hu W, Liu S, Gao X, Nova I, Tronconi E. Transient Kinetic Analysis of Low-Temperature NH 3-SCR over Cu-CHA Catalysts Reveals a Quadratic Dependence of Cu Reduction Rates on Cu II. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05362] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Federica Gramigni
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Nicole Daniela Nasello
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Nicola Usberti
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Umberto Iacobone
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Tommaso Selleri
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Wenshuo Hu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Shaojun Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Isabella Nova
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| | - Enrico Tronconi
- Laboratory of Catalysis and Catalytic Processes, Dipartimento di Energia, Politecnico di Milano, Via La Masa 34, 20156 Milano, Italy
| |
Collapse
|
22
|
In situ X-ray absorption study of Cu species in Cu-CHA catalysts for NH3-SCR during temperature-programmed reduction in NO/NH3. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04350-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractAmmonia-mediated selective catalytic reduction (NH3-SCR) using Cu-exchanged chabazite zeolites as catalysts is one of the leading technologies for NOx removal from exhaust gases, with CuII/CuI redox cycles being the basis of the catalytic reaction. The amount of CuII ions reduced by NO/NH3 can be quantified by the consumption of NO during temperature-programmed reduction experiments (NO-TPR). In this article, we show the capabilities of in situ X-ray absorption near-edge spectroscopy (XANES), coupled with multivariate curve resolution (MCR) and principal component analysis (PCA) methods, in following CuII/CuI speciation during reduction in NO/NH3 after oxidation in NO/O2 at 50 °C on samples with different copper loading and pretreatment conditions. Our XANES results show that during the NO/NH3 ramp CuII ions are fully reduced to CuI in the 50–290 °C range. The number of species involved in the process, their XANES spectra and their concentration profiles as a function of the temperature were obtained by MCR and PCA. Mixed ligand ammonia solvated complexes [CuII(NH3)3(X)]+ (X = OH−/O− or NO3−) are present at the beginning of the experiment, and are transformed into mobile [CuI(NH3)2]+ complexes: these complexes lose an NH3 ligand and become framework-coordinated above 200 °C. In the process, multiple CuII/CuI reduction events are observed: the first one around 130 °C is identified with the reduction of [CuII(NH3)3(OH/O)]+ moieties, while the second one occurs around 220–240 °C and is associated with the reduction of the ammonia-solvated Cu-NO3− species. The nitrate concentration in the catalysts is found to be dependent on the zeolite Cu loading and on the applied pretreatment conditions. Ammonia solvation increases the number of CuII sites available for the formation of nitrates, as confirmed by infrared spectroscopy.
Collapse
|
23
|
Zhao P, Boekfa B, Shimizu KI, Ogura M, Ehara M. Selective catalytic reduction of NO with NH 3 over Cu-exchanged CHA, GME, and AFX zeolites: a density functional theory study. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02342f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations have been applied to study the selectivity caused by the cage size during the selective catalytic reduction of NO by NH3 over the Cu-exchanged zeolites with cha, gme, and aft cages.
Collapse
Affiliation(s)
- Pei Zhao
- Research Center for Computational Science
- Institute for Molecular Science
- Okazaki
- Japan
- Element Strategy Initiative for Catalysts and Batteries (ESICB)
| | - Bundet Boekfa
- Department of Chemistry
- Faculty of Liberal Arts and Science
- Kasetsart University, Kamphaengsaen Campus
- Thailand
| | - Ken-ichi Shimizu
- Element Strategy Initiative for Catalysts and Batteries (ESICB)
- Kyoto University
- Kyoto 615-8245
- Japan
- Institute for Catalysis
| | - Masaru Ogura
- Element Strategy Initiative for Catalysts and Batteries (ESICB)
- Kyoto University
- Kyoto 615-8245
- Japan
- Institute of Industrial Science
| | - Masahiro Ehara
- Research Center for Computational Science
- Institute for Molecular Science
- Okazaki
- Japan
- Element Strategy Initiative for Catalysts and Batteries (ESICB)
| |
Collapse
|
24
|
Lin Q, Liu S, Xu S, Xu S, Pei M, Yao P, Xu H, Dan Y, Chen Y. Comprehensive effect of tuning Cu/SAPO-34 crystals using PEG on the enhanced hydrothermal stability for NH 3-SCR. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01194d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PEG fabricates advantageous hierarchical zeolite crystals, enhancing the high-temperature and low-temperature hydrothermal stability of Cu/SAPO-34.
Collapse
Affiliation(s)
- Qingjin Lin
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610064, China
| | - Shuang Liu
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, China
| | - Shuhao Xu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Shi Xu
- Weichai Power Co., Ltd, Weifang 261061, Shangdong, China
| | - Mingming Pei
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Pan Yao
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, China
| | - Haidi Xu
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, China
- Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan, China
- Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan, China
| | - Yi Dan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610064, China
| | - Yaoqiang Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
- Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan, China
- Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan, China
| |
Collapse
|
25
|
Liu C, Kubota H, Amada T, Toyao T, Maeno Z, Ogura M, Nakazawa N, Inagaki S, Kubota Y, Shimizu KI. Selective catalytic reduction of NO over Cu-AFX zeolites: mechanistic insights from in situ/ operando spectroscopic and DFT studies. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00282a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ/operando spectroscopic experiments and DFT calculations unravel the redox mechanism of NH3-SCR over Cu-AFX zeolites.
Collapse
Affiliation(s)
- Chong Liu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hiroe Kubota
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Takehiro Amada
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Takashi Toyao
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| | - Zen Maeno
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
| | - Masaru Ogura
- Elements Strategy Initiative for Catalysts and Batteries
- Kyoto University
- Kyoto 615-8520
- Japan
- Institute of Industrial Science
| | - Naoto Nakazawa
- Division of Materials Science and Chemical Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Satoshi Inagaki
- Division of Materials Science and Chemical Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Yoshihiro Kubota
- Division of Materials Science and Chemical Engineering
- Yokohama National University
- Yokohama 240-8501
- Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis
- Hokkaido University
- Sapporo 001-0021
- Japan
- Elements Strategy Initiative for Catalysts and Batteries
| |
Collapse
|
26
|
Abstract
Dynamic motion of NH3-solvated Cu sites in Cu-chabazite (Cu-CHA) zeolites, which are the most promising and state-of-the-art catalysts for ammonia-assisted selective reduction of NOx (NH3-SCR) in the aftertreatment of diesel exhausts, represents a unique phenomenon linking heterogeneous and homogeneous catalysis. This review first summarizes recent advances in the theoretical understanding of such low-temperature Cu dynamics. Specifically, evidence of both intra-cage and inter-cage Cu motions, given by ab initio molecular dynamics (AIMD) or metadynamics simulations, will be highlighted. Then, we will show how, among others, synchrotron-based X-ray spectroscopy, vibrational and optical spectroscopy (diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) and diffuse reflection ultraviolet-visible spectroscopy (DRUVS)), electron paramagnetic spectroscopy (EPR), and impedance spectroscopy (IS) can be combined and complement each other to follow the evolution of coordinative environment and the local structure of Cu centers during low-temperature NH3-SCR reactions. Furthermore, the essential role of Cu dynamics in the tuning of low-temperature Cu redox, in the preparation of highly dispersed Cu-CHA catalysts by solid-state ion exchange method, and in the direct monitoring of NH3 storage and conversion will be presented. Based on the achieved mechanistic insights, we will discuss briefly the new perspectives in manipulating Cu dynamics to improve low-temperature NH3-SCR efficiency as well as in the understanding of other important reactions, such as selective methane-to-methanol oxidation and ethene dimerization, catalyzed by metal ion-exchanged zeolites.
Collapse
|
27
|
Wilcox LN, Krishna SH, Jones CB, Gounder R. Mechanistic studies of NH 3-assisted reduction of mononuclear Cu( ii) cation sites in Cu-CHA zeolites. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01646f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spectroscopic, titrimetric, and gas-phase product analysis methods reveal a six-electron process for NH3-assisted reduction of mononuclear Cu(ii) sites to Cu(i) in Cu-CHA zeolites of different Cu(ii) site speciation and density.
Collapse
Affiliation(s)
- Laura N. Wilcox
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Siddarth H. Krishna
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Casey B. Jones
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
28
|
Mesilov V, Dahlin S, Bergman SL, Hammershøi PS, Xi S, Pettersson LJ, Bernasek SL. Insights into sulfur poisoning and regeneration of Cu-SSZ-13 catalysts: in situ Cu and S K-edge XAS studies. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00975c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The temperature during sulfur poisoning affects the relation between total sulfur content and the fraction of sulfur-free copper in poisoned and regenerated Cu-SSZ-13 catalysts.
Collapse
Affiliation(s)
- Vitaly Mesilov
- Science Division
- Yale-NUS College
- Singapore 138527
- Singapore
| | - Sandra Dahlin
- Department of Chemical Engineering
- KTH Royal Institute of Technology
- Stockholm 10044
- Sweden
- Scania CV AB
| | | | | | - Shibo Xi
- Institute of Chemical and Engineering Sciences
- A*STAR
- Singapore 627833
- Singapore
| | - Lars J. Pettersson
- Department of Chemical Engineering
- KTH Royal Institute of Technology
- Stockholm 10044
- Sweden
| | | |
Collapse
|
29
|
Oda A, Shionoya H, Hotta Y, Takewaki T, Sawabe K, Satsuma A. Spectroscopic Evidence of Efficient Generation of Dicopper Intermediate in Selective Catalytic Reduction of NO over Cu-Ion-Exchanged Zeolites. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03425] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Akira Oda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Hitomi Shionoya
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuusuke Hotta
- Science & Innovation Center, Inorganic Materials Laboratory, Mitsubishi Chemical Corporation, Yokohama 227-8502, Japan
| | - Takahiko Takewaki
- Science & Innovation Center, Inorganic Materials Laboratory, Mitsubishi Chemical Corporation, Yokohama 227-8502, Japan
| | - Kyoichi Sawabe
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Atsushi Satsuma
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| |
Collapse
|
30
|
Negri C, Selleri T, Borfecchia E, Martini A, Lomachenko KA, Janssens TVW, Cutini M, Bordiga S, Berlier G. Structure and Reactivity of Oxygen-Bridged Diamino Dicopper(II) Complexes in Cu-Ion-Exchanged Chabazite Catalyst for NH 3-Mediated Selective Catalytic Reduction. J Am Chem Soc 2020; 142:15884-15896. [PMID: 32830975 PMCID: PMC8011910 DOI: 10.1021/jacs.0c06270] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 01/14/2023]
Abstract
The NH3-mediated selective catalytic reduction (NH3-SCR) of NOx over Cu-ion-exchanged chabazite (Cu-CHA) catalysts is the basis of the technology for abatement of NOx from diesel vehicles. A crucial step in this reaction is the activation of oxygen. Under conditions for low-temperature NH3-SCR, oxygen only reacts with CuI ions, which are present as mobile CuI diamine complexes [CuI(NH3)2]+. To determine the structure and reactivity of the species formed by oxidation of these CuI diamine complexes with oxygen at 200 °C, we have followed this reaction, using a Cu-CHA catalyst with a Si/Al ratio of 15 and 2.6 wt% Cu, by X-ray absorption spectroscopies (XANES and EXAFS) and diffuse reflectance UV-Vis spectroscopy, with the support of DFT calculations and advanced EXAFS wavelet transform analysis. The results provide unprecedented direct evidence for the formation of a [Cu2(NH3)4O2]2+ mobile complex with a side-on μ-η2,η2-peroxo diamino dicopper(II) structure, accounting for 80-90% of the total Cu content. These [Cu2(NH3)4O2]2+ are completely reduced to [CuI(NH3)2]+ at 200 °C in a mixture of NO and NH3. Some N2 is formed as well, which suggests the role of the dimeric complexes in the low-temperature NH3-SCR reaction. The reaction of [Cu2(NH3)4O2]2+ complexes with NH3 leads to a partial reduction of the Cu without any formation of N2. The reaction with NO results in an almost complete reduction to CuI, under the formation of N2. This indicates that the low-temperature NH3-SCR reaction proceeds via a reaction of these complexes with NO.
Collapse
Affiliation(s)
- Chiara Negri
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria
7, I-10125 Turin, Italy
| | - Tommaso Selleri
- Dipartimento
di Energia, Laboratorio di Catalisi e Processi
Catalitici, Politecnico
di Milano, Via La Masa 34, I-20156 Milano, Italy
| | - Elisa Borfecchia
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria
7, I-10125 Turin, Italy
| | - Andrea Martini
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria
7, I-10125 Turin, Italy
- Smart
Materials Research Institute, Southern Federal
University, Sladkova
Street 174/28, 344090 Rostov-on-Don, Russia
| | - Kirill A. Lomachenko
- European
Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | | | - Michele Cutini
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria
7, I-10125 Turin, Italy
| | - Silvia Bordiga
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria
7, I-10125 Turin, Italy
| | - Gloria Berlier
- Department
of Chemistry and NIS Centre, University
of Turin, Via Giuria
7, I-10125 Turin, Italy
| |
Collapse
|
31
|
Paolucci C, Di Iorio JR, Schneider WF, Gounder R. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides. Acc Chem Res 2020; 53:1881-1892. [PMID: 32786332 DOI: 10.1021/acs.accounts.0c00328] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ConspectusCopper-exchanged chabazite (Cu-CHA) zeolites are catalysts used in diesel emissions control for the abatement of nitrogen oxides (NOx) via selective catalytic reduction (SCR) reactions with ammonia as the reductant. The discovery of these materials in the early 2010s enabled a step-change improvement in diesel emissions aftertreatment technology. Key advantages of Cu-CHA zeolites over prior materials include their effectiveness at the lower temperatures characteristic of diesel exhaust, their durability under high-temperature hydrothermal conditions, and their resistance to poisoning from residual hydrocarbons present in exhaust. Fundamental catalysis research has since uncovered mechanistic and kinetic features that underpin the ability of Cu-CHA to selectively reduce NOx under strongly oxidizing conditions and to achieve improved NOx conversion relative to other zeolite frameworks, particularly at low exhaust temperatures and with ammonia instead of other reductants.One critical mechanistic feature is the NH3 solvation of exchanged Cu ions at low temperatures (<523 K) to create cationic Cu-amine coordination complexes that are ionically tethered to anionic Al framework sites. This ionic tethering confers regulated mobility that facilitates interconversion between mononuclear and binuclear Cu complexes, which is necessary to propagate SCR through a Cu2+/Cu+ redox cycle during catalytic turnover. This dynamic catalytic mechanism, wherein single and dual metal sites interconvert to mediate different half-reactions of the redox cycle, combines features canonically associated with homogeneous and heterogeneous reaction mechanisms.In this Account, we describe how a unified experimental and theoretical interrogation of Cu-CHA catalysts in operando provided quantitative evidence of regulated Cu ion mobility and its role in the SCR mechanism. This approach relied on new synthetic methods to prepare model Cu-CHA zeolites with varied active-site structures and spatial densities in order to verify that the kinetic and mechanistic models describe the catalytic behavior of a family of materials of diverse composition, and on new computational approaches to capture the active-site structure and dynamics under conditions representative of catalysis. Ex situ interrogation revealed that the Cu structure depends on the conditions for the zeolite synthesis, which influence the framework Al substitution patterns, and that statistical and electronic structure models can enumerate Cu site populations for a known Al distribution. This recognition unifies seemingly disparate spectroscopic observations and inferences regarding Cu ion structure and responses to different external conditions. SCR rates depend strongly on the Cu spatial density and zeolite composition in kinetic regimes where Cu+ oxidation with O2 becomes rate-limiting, as occurs at lower temperatures and under fuel-rich conditions. Transient experiments, ab initio molecular dynamics simulations, and statistical models relate these sensitivities to the mobility constraints imposed by the CHA framework on NH3-solvated Cu ions, which regulate the pore volume accessible to these ions and their ability to pair and complete the catalytic cycle. This highlights the key characteristics of the CHA framework that enable superior performance under low-temperature SCR reaction conditions.This work illustrates the power of precise control over a catalytic material, simultaneous kinetic and spectroscopic interrogation over a wide range of reaction conditions, and computational strategies tailored to capture those reaction conditions to reveal in microscopic detail the mechanistic features of a complex and widely practiced catalysis. In doing so, it highlights the key role of ion mobility in catalysis and thus potentially a more general phenomenon of reactant solvation and active site mobilization in reactions catalyzed by exchanged metal ions in zeolites.
Collapse
Affiliation(s)
- Christopher Paolucci
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - John R. Di Iorio
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - William F. Schneider
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
32
|
Spectral Decomposition of X-ray Absorption Spectroscopy Datasets: Methods and Applications. CRYSTALS 2020. [DOI: 10.3390/cryst10080664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
X-ray absorption spectroscopy (XAS) today represents a widespread and powerful technique, able to monitor complex systems under in situ and operando conditions, while external variables, such us sampling time, sample temperature or even beam position over the analysed sample, are varied. X-ray absorption spectroscopy is an element-selective but bulk-averaging technique. Each measured XAS spectrum can be seen as an average signal arising from all the absorber-containing species/configurations present in the sample under study. The acquired XAS data are thus represented by a spectroscopic mixture composed of superimposed spectral profiles associated to well-defined components, characterised by concentration values evolving in the course of the experiment. The decomposition of an experimental XAS dataset in a set of pure spectral and concentration values is a typical example of an inverse problem and it goes, usually, under the name of multivariate curve resolution (MCR). In the present work, we present an overview on the major techniques developed to realize the MCR decomposition together with a selection of related results, with an emphasis on applications in catalysis. Therein, we will highlight the great potential of these methods which are imposing as an essential tool for quantitative analysis of large XAS datasets as well as the directions for further development in synergy with the continuous instrumental progresses at synchrotron sources.
Collapse
|
33
|
Zhang Y, Peng Y, Li J, Groden K, McEwen JS, Walter ED, Chen Y, Wang Y, Gao F. Probing Active-Site Relocation in Cu/SSZ-13 SCR Catalysts during Hydrothermal Aging by In Situ EPR Spectroscopy, Kinetics Studies, and DFT Calculations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01590] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yani Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Kyle Groden
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Jean-Sabin McEwen
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
- Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, United States
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Department of Biological Systems Engineering, Washington State University, Pullman, 99164, United States
| | - Eric D. Walter
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ying Chen
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99164, United States
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
34
|
Chen L, Janssens TVW, Vennestrøm PNR, Jansson J, Skoglundh M, Grönbeck H. A Complete Multisite Reaction Mechanism for Low-Temperature NH3-SCR over Cu-CHA. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00440] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lin Chen
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | - Jonas Jansson
- Volvo Group Trucks Technology, SE-405 08 Göteborg, Sweden
| | - Magnus Skoglundh
- Department of Chemistry and Chemical Engineering, and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Henrik Grönbeck
- Department of Physics and Competence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| |
Collapse
|
35
|
Pankin IA, Martini A, Lomachenko KA, Soldatov AV, Bordiga S, Borfecchia E. Identifying Cu-oxo species in Cu-zeolites by XAS: A theoretical survey by DFT-assisted XANES simulation and EXAFS wavelet transform. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.09.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Clark AH, Nuguid RJG, Steiger P, Marberger A, Petrov AW, Ferri D, Nachtegaal M, Kröcher O. Selective Catalytic Reduction of NO with NH
3
on Cu−SSZ‐13: Deciphering the Low and High‐temperature Rate‐limiting Steps by Transient XAS Experiments. ChemCatChem 2020. [DOI: 10.1002/cctc.201901916] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Rob Jeremiah G. Nuguid
- Paul Scherrer Institut 5232 Villigen Switzerland
- Institute of Chemical Science and EngineeringÉcole polytechnique fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Patrick Steiger
- Paul Scherrer Institut 5232 Villigen Switzerland
- Institute of Chemical Science and EngineeringÉcole polytechnique fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Adrian Marberger
- Paul Scherrer Institut 5232 Villigen Switzerland
- Institute of Chemical Science and EngineeringÉcole polytechnique fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | | | - Davide Ferri
- Paul Scherrer Institut 5232 Villigen Switzerland
| | | | - Oliver Kröcher
- Paul Scherrer Institut 5232 Villigen Switzerland
- Institute of Chemical Science and EngineeringÉcole polytechnique fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
37
|
Plasma-Assisted Selective Catalytic Reduction for Low-Temperature Removal of NOx and Soot Simulant. Catalysts 2019. [DOI: 10.3390/catal9100853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The challenge that needs to be overcome regarding the removal of nitrogen oxides (NOx) and soot from exhaust gases is the low activity of the selective catalytic reduction of NOx at temperatures fluctuating from 150 to 350 °C. The primary goal of this work was to enhance the conversion of NOx and soot simulant by employing a Ag/α-Al2O3 catalyst coupled with dielectric barrier discharge plasma. The results demonstrated that the use of a plasma-catalyst process at low operating temperatures increased the removal of both NOx and naphthalene (soot simulant). Moreover, the soot simulant functioned as a reducing agent for NOx removal, but with low NOx conversion. The high efficiency of NOx removal required the addition of hydrocarbon fuel. In summary, the combined use of the catalyst and plasma (specific input energy, SIE ≥ 60 J/L) solved the poor removal of NOx and soot at low operating temperatures or during temperature fluctuations in the range of 150–350 °C. Specifically, highly efficient naphthalene removal was achieved with low-temperature adsorption on the catalyst followed by the complete decomposition by the plasma-catalyst at 350 °C and SIE of 90 J/L.
Collapse
|