1
|
Zhang L, Zhang L, Yang Y, Zhang X, Fang S, Zhao Y, Yang X, Wang X, Chen L. Studying mercury and polymethyl methacrylate joint effects on endogenous hydrogen polysulfides via fluorescence imaging. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137643. [PMID: 39983645 DOI: 10.1016/j.jhazmat.2025.137643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/18/2024] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
Heavy metal ions and micro(nano)plastic pollution have attracted increasing attention. However, their toxicological effects on endogenous reactive species at molecular level are unclear, especially their joint effects. Hence, two typical environmental poisons, mercury (Hg2+) and polymethyl methacrylate (PMMA), posing significant risks to both human health and ecosystems, are selected as pollution models for studying joint effects. Hydrogen polysulfides (H2Sn, n > 1) play crucial roles in removing oxidants and intracellular electrophilic reagents, involved in regulating intracellular redox state. The understanding of its precise biological role and intricate mechanism action remains limited, especially suffering from exogenous environmental stress. Herein, we have developed a novel H2Sn- responsive fluorescence probe P-Y with outstanding performance. Moreover, probe P-Y could image endogenous H2Sn levels in cells, and was successfully applied for monitoring the fluctuations of endogenous H2Sn levels to investigate their effects on redox homeostasis under Hg2+ and PMMA single and combined exposure. This study provided imaging evidences and an absorbing insight for understanding H2Sn function under Hg2+ and PMMA single and joint effects in living organisms.
Collapse
Affiliation(s)
- Li Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Yang Yang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xia Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Shujing Fang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yang Zhao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xintong Yang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
2
|
Agrawal HG, Giri PS, Sahoo T, Rath SN, Mishra AK. Flavin-based probe for real-time monitoring of hypochlorous acid dynamics in live cells. J Mater Chem B 2025; 13:5109-5116. [PMID: 40183154 DOI: 10.1039/d4tb02727b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The present study introduces TPA-vinylene-flavin (TVF) as a flavin-based turn-on fluorescent probe. TVF effectively detects HOCl, as evaluated by the solution phase studies with a detection limit of 0.36 μM. This probe shows excellent biocompatibility and rapid cellular internalization, making it suitable for real-time monitoring of HOCl fluctuations in both physiological and pathological conditions. Furthermore, the TVF probe exhibits specific mitochondrial localization and selectively detects HOCl in both endogenous and exogenous contexts within live cells. It demonstrates excellent sensitivity to HOCl concentrations over time, enabling precise tracking of dynamic fluctuations, which is critical for understanding its role in cellular processes and oxidative stress-related pathologies.
Collapse
Affiliation(s)
- Harsha Gopal Agrawal
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Telangana, India.
| | - Pravin Shankar Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502284, Telangana, India
| | - Tanima Sahoo
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Telangana, India.
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, 502284, Telangana, India
| | - Ashutosh Kumar Mishra
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, Telangana, India.
| |
Collapse
|
3
|
Hu B, Liu Q, Jiang Y, Huang Y, Ji H, Zhang J, Wang X, Shen XC, Chen H. NIR-II Fluorescence/Photoacoustic Dual Ratiometric Probes with Unique Recognition Site for Quantitatively Visualizing H 2S 2 in Vivo. Angew Chem Int Ed Engl 2025; 64:e202418378. [PMID: 39533159 DOI: 10.1002/anie.202418378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/29/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024]
Abstract
Hydrogen persulfide (H2S2) plays a significant role in redox biology and signal transduction; therefore, quantitative visualization of H2S2 in the deep tissue of living organisms is essential for obtaining reliable information about relevant pathophysiological processes directly. However, currently reported H2S2 probes are unsuitable for this purpose because of their poor selectivity for many polysulfide species or their short wavelength, which hinders precise imaging in deep tissues. Herein, for the first time, we report a unique H2S2-mediated dithiole formation reaction. Based on this reaction, we construct the first NIR-II fluorescence (FL) and photoacoustic (PA) dual-ratiometric probe (NIR-II-H2S2) for quantitatively visualizing H2S2 in vivo. This probe shows dual-ratiometric NIR-II fluorescence (I840/I1000, 107-fold) and photoacoustic (PA800/PA900, 6.5-fold) responses towards Na2S2 species with high specificity, excellent sensitivity (1.8 nM), improved water solubility, and deep-tissue penetration. More importantly, using NIR-II dual-ratiometric FL/PA imaging, we successfully demonstrated that the probe could be used to accurately quantify the fluctuating H2S2 levels in the liver-injury mouse models induced by lipopolysaccharides or metformin drugs. Overall, this study not only presents a promising tool for H2S2-related pathological research, but also provides a unique recognition site that may be generalized for designing more useful H2S2 imaging agents in the future.
Collapse
Affiliation(s)
- Bangping Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Qinian Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yulan Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yujie Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Huiquan Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Jiqi Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xia Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
4
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
5
|
Wang Y, Huo F, Yin C. Development of Human Serum Albumin Fluorescent Probes in Detection, Imaging, and Disease Therapy. J Phys Chem B 2024; 128:1121-1138. [PMID: 38266243 DOI: 10.1021/acs.jpcb.3c06915] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Human serum albumin (HSA) acts as a repository and transporter of substances in the blood. An abnormal concentration may indicate the occurrence of liver- and kidney-related diseases, which has attracted people to investigate the precise quantification of HSA in body fluids. Fluorescent probes can combine with HSA covalently or noncovalently to quantify HSA in urine and plasma. Moreover, probes combined with HSA can improve its photophysical properties; probe-HSA has been applied in real-time monitoring and photothermal and photodynamic therapy in vivo. This Review will introduce fluorescent probes for quantitative HSA according to the three reaction mechanisms of spatial structure, enzymatic reaction, and self-assembly and systematically introduce the application of probes combined with HSA in disease imaging and phototherapy. It will help develop multifunctional applications for HSA probes and provide assistance in the early diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
6
|
Zhang X, Yang Y, Zhang L, Liu S, Song Z, Zhang L, You J, Chen L. Development of fluorescent probes with specific recognition moiety for hydrogen polysulfide. Talanta 2024; 268:125293. [PMID: 37857112 DOI: 10.1016/j.talanta.2023.125293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Hydrogen polysulfide (H2Sn, n > 1) is an important component of reactive sulfur species (RSS), which is an important substance for maintaining the redox balance in cells. However, limited recognition moieties are available for hydrogen polysulfide probe design. In this study, we have constructed a small library containing several organic molecules to explore a new specific recognition moiety for H2Sn fluorescent probe design. To validate the discovery, two fluorescent probes, 7 and BCC, were further developed based on coumarin and its derivative. The probes exhibited desirable specificity for H2Sn monitoring, which can be used for detecting H2Sn in solution and cells. The new specific recognition moiety for H2Sn fluorescent probe design discovered in this work has certain guiding significance for development of H2Sn probes exploring biological roles in the future.
Collapse
Affiliation(s)
- Xia Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Yang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Li Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shudi Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zhihua Song
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Jinmao You
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
7
|
Meng J, Liu HC, Guo YY, Wang F, Pi DJ, Yu QZ. Discovery of a triphenylamine-benzofuran derivative as fluorescent probe for hydrogen polysulfide in tea samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122191. [PMID: 36463623 DOI: 10.1016/j.saa.2022.122191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
In this work, a novel triphenylamine-benzofuran derived fluorescent probe, TBF-SS, was developed for detecting hydrogen polysulfide in tea samples and intracellular imaging. TBF-SS showed the practical advantages including high sensitivity (LOD = 0.01 μM), high selectivity, rapid response (within 15 min), and steadiness in various environmental conditions. The detecting system was steady within pH range of 6.0-11.0 and temperature range of 20-55 °C. The probe TBF-SS could guarantee the stable detection of H2Sn for 7 d in storage of either solid or solution. In particular, in the application of various tea samples with different brewing times and testing temperatures, the recovery percentages varied in the range of 95.22 % to 105.0 %. Therefore accurate monitoring of H2Sn could be achieved by using the probe TBF-SS. In addition, TBF-SS could monitor the exogenous level, the β-lapachone-induced generation and the tea-sample-treated introduction of H2Sn in living MCF-7 cells. This work might inspire the improvement of the serviceability of fluorescent implements.
Collapse
Affiliation(s)
- Juan Meng
- College of Preparatory Education, Guangxi Minzu University, Nanning 530006, PR China
| | - Hong-Cun Liu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530006, PR China.
| | - Yang-Yang Guo
- Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, PR China
| | - Fang Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530006, PR China
| | - Du-Juan Pi
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530006, PR China
| | - Qian-Zhou Yu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530006, PR China
| |
Collapse
|
8
|
Hao X, Zhan J, Geng C, Lin W. Discriminating normal and inflammatory mice models by viscosity changes with a two-photon fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121807. [PMID: 36070672 DOI: 10.1016/j.saa.2022.121807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Studies have found that the intracellular viscosity changes have close relationship with many diseases, therefore design and synthesis of fluorescent probe for testing intracellular viscosity is of great significance to the development of clinical. Herein, we developed a new two-photon near infrared probe (HCT) for viscosity imaging to discriminate normal and inflammatory models. Experimental results displayed that HCT has great sensitivity for the detection of viscosity, and based on the excellent performance of its photostability and lower cytotoxicity, HCT was successfully utilized for single-photon/ two-photon fluorescence imaging of the viscosity in living cells. More importantly, we employ HCT to further showcase in living tissues. Additionally, HCT could be used to discriminate between normal and inflamed mice, heralding its practical application in biomedical aspects.
Collapse
Affiliation(s)
- Xinya Hao
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Jingting Zhan
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Chen Geng
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
9
|
Jia H, Liu Y, Hu JJ, Li G, Lou X, Xia F. Lifetime-Based Responsive Probes: Design and Applications in Biological Analysis. Chem Asian J 2022; 17:e202200563. [PMID: 35916038 DOI: 10.1002/asia.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/26/2022] [Indexed: 11/10/2022]
Abstract
With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis. With the development of modern biomedicine, biological analysis and detection are very important in disease diagnosis, detection of curative effect, prognosis and prediction of tumor recurrence. Compared with the currently widely used optical probes based on intensity signals, the lifetime signal does not depend on the influence of conditions such as the concentration of luminophore, tissue penetration depth and measurement method. Therefore, biological detection methods based on lifetime-based responsive probes have attracted great attention from the scientific community. Here, we briefly review the key advances in lifetime-based responsive probes in recent years (2017-2022). The review focuses on the design strategies of lifetime-based responsive probes and the research progress of their applications in the field of bioanalysis, and discusses the challenges they face. We hope it will further promote the development of lifetime-based responsive probes in the field of bioanalysis.
Collapse
Affiliation(s)
- Hui Jia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Yiheng Liu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Jing-Jing Hu
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Guogang Li
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| | - Xiaoding Lou
- China University of Geosciences, Faculty of Materials Science and Chemistry, 388 Lumo Road, Wuhan 430074, P. R. China, 430074, wuhan, CHINA
| | - Fan Xia
- China University of Geosciences, Faculty of Materials Science and Chemistry, CHINA
| |
Collapse
|
10
|
Liu FL, Yuchi XX, Zhang MH, Huang J, Hu XW, Man RJ. A fluorescent probe derived from Berberrubine for detecting hydrogen polysulfide in food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120491. [PMID: 34653849 DOI: 10.1016/j.saa.2021.120491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
In this work, we chose the fluorophore Berberrubine to develop a selective probe for hydrogen polysulfide (H2Sn), and applied it into the detection in both food samples and living cells. The developed probe, HER9SS, suggested practical steadiness and serviceability, especially for multi-scene detection. The detecting system was stable in relatively wide pH (7.0-11.0) and temperature (25-45 °C) ranges. Both the storage of BER9SS in solid or in solution could maintain the steadiness over 7 d. BER9SS also indicated advantages including rapid response (within 15 min), high sensitivity (LOD = 0.02 μM; LOQ = 0.01 μM), long linear range (0-15.0 equivalent) and high selectivity among competing analytes. The recovery ranging in 95.23% - 104.8% in the applications in food sources samples (including water and plants) and food samples inferred the practical potential of BER9SS. In biological imaging, BER9SS could achieve both the dose-dependent monitoring and the β-lapachone-induced generation of H2Sn. Therefore, the information in this work might be useful for the development of fluorescent probes from natural products for multi-scene applications in future, especially with the corresponding attentions on the practicability and serviceability.
Collapse
Affiliation(s)
- Fu-Ling Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Xue-Xian Yuchi
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Mei-Hui Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Jie Huang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
| | - Xiao-Wei Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Ruo-Jun Man
- Guangxi Biological Polysaccharide Separation, Purification and Modification Research Platform, Guangxi University for Nationalities, Nanning 530006, China.
| |
Collapse
|
11
|
Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2050-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Di X, Ge C, Liu Y, Shao C, Zhu HL, Liu HK, Qian Y. Monitoring hydrogen polysulfide during ferroptosis with a two-photon fluorescent probe. Talanta 2021; 232:122467. [PMID: 34074439 DOI: 10.1016/j.talanta.2021.122467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Hydrogen polysulfide (H2Sn, n > 1), a member of reactive sulfur species (RSS), is primarily generated during the crosstalk between H2S and reactive oxygen species (ROS), which plays important role in physiological and pathological processes. Ferroptosis is a new non-classical mode of cell death, in which ROS-associated lipid peroxidation and iron-dependent accumulation are the main features. However, the biological effects of H2Sn on ferroptosis and the detailed mechanisms of action remain poorly understood. Thus, there is an urgent need to develop highly selective and sensitive chemical tools for monitoring H2Sn in living cells. Herein, we develop a two-photon fluorescent probe (PSP) for specifically imaging H2Sn in live cells and tumor spheroids. This probe exhibited a sensitive and selective response to H2Sn, which had been used for imaging exogenous and endogenous H2Sn in living cells by confocal imaging and high content imaging. PSP exhibits excellent photo-stability and two-photon imaging performance when irradiating at 880 nm in 3D HeLa multicellular tumor spheroids. Importantly, our studies revealed that H2Sn levels were significantly up-regulated during ferroptosis. These excellent properties ensure that PSP is a promising two-photon probe for exploring the biological and pathological effects of H2Sn during ferroptosis.
Collapse
Affiliation(s)
- Xiaojiao Di
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Chao Ge
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yani Liu
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chenwen Shao
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hai-Liang Zhu
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hong-Ke Liu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yong Qian
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
13
|
Xu Y, Zhang K, Gao X, Leng J, Fan J. Responsive mechanism of 2-fluoro-5-nitrobenzoate based two-photon fluorescent probes for H 2S n detection: A theoretical perspective. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119244. [PMID: 33281087 DOI: 10.1016/j.saa.2020.119244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/23/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Two-photon fluorescent probes with large two-photon absorption (TPA) cross sections have shown wide applications in biomedical domain. However, both the species and amounts of high efficient probes are far from meeting the requirements, one main reason is that the relationship between the molecular structures and the responsive mechanisms are not clear and theoretical framework in this field is not perfect. In this work, the photophysical properties including one- and two-photon absorption and emission of three newly synthesized fluorescent probes for hydrogen polysulfide (H2Sn) detection are investigated by density functional theory and time-dependent density functional theory with the polarizable continuum model in different solvents. Results indicate that the enhanced fluorescent intensity and enlarged TPA cross section can be found when the probes reacted with H2Sn. Moreover, the OPA intensity is largest and its fluorescent intensity is largely enhanced when detecting H2Sn for Pro2, this verifies its superior performance in the detection of H2Sn than Pro1 and Pro 3. Furthermore, the inner mechanism for the increase of TPA cross section is revealed, the responsive mechanisms for photo induced electron transfer (PET) and fluorescence resonance energy transfer (FRET) processes are revealed through analyzing the energies and distributions of frontier orbitals. Our calculations provide theoretical perspectives for experimental measurements and could sever as a useful reference for developing advanced probes in biomedical fields.
Collapse
Affiliation(s)
- Yuanyuan Xu
- School of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xingguo Gao
- School of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jiancai Leng
- School of Science, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jianzhong Fan
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
14
|
Luminescent probes for luminescence lifetime sensing and imaging in live cells: a narrative review. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Zhang X, Zhang L, Gao M, Wang Y, Chen L. A near-infrared fluorescent probe for observing thionitrous acid-mediated hydrogen polysulfides formation and fluctuation in cells and in vivo under hypoxia stress. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122673. [PMID: 32361129 DOI: 10.1016/j.jhazmat.2020.122673] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen polysulfides (H2Sn, n>1) as important intracellular reactive sulfur species (RSS) are believe to be responsible for cellular redox regulation. Lots of researches about H2Sn focusing on their formation, detection and bio-function in signalling regulation are spring up but with poor understanding, especially for biosynthesis and bio-function remain complicated and confusing. Recent studies reveal that thionitrous acid (HSNO) as potential intermediate linked signalling molecules of nitrogenous and sulphureous during biotic redox regulation. However, there are limited evidences for supporting the interrelation and bioeffect between HSNO and H2Sn. Herein, we have successfully designed a near-infrared (NIR) fluorescent probe ((2-fluoro-5-nitrobenzoyl)oxy)-Benzo[e]cyanine (BCy-FN) for detection H2Sn and for the first time observing HSNO-mediated H2Sn generation in cells and in vivo. The probe is harvested from fluorophore BCy-Keto and 2-fluoro-5-nitrobenzoic acid in one step, featuring mitochondria localization. The unique Enol-Keto tautomerization of fluorophore enables the probe becomes more sensitive and has powerful application. Hypoxia model has been constructed and powerfully interpreted the pretreatment of HSNO for zebrafish hypoxia process effectively improves H2Sn levels and defends the hypoxia induced brain damage. We believe the present studies will help environmentalist and biologist for better understanding of biosynthesis and bio-function in HSNO-mediated H2Sn formation process under hypoxia stress.
Collapse
Affiliation(s)
- Xia Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangwei Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Min Gao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
16
|
Qiao D, Li L, Shen T, Yang J, Chang H, Liang X, Zhang L, Wang Q, Liu N, Zhao W, Shang L. Establishment of a Customizable Fluorescent Probe Platform for the Organelle-Targeted Bioactive Species Detection. ACS Sens 2020; 5:2247-2254. [PMID: 32627537 DOI: 10.1021/acssensors.0c00992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A customizable fluorescent probe platform that can be used to detect various bioactive analytes offers significant potential for engineering a wide range of bioprobes with diverse sensing and imaging functions. Here, we show a facile and innovative strategy for introducing cis-amino-proline as a carrier scaffold, which is appended with three specific functional groups: a target group, a water-soluble group, and fluorophores with triggers. The potency of the designed strategy could be customized to generate variable multifunctional fluorescent probes for detecting bioactive species of interest, including reactive oxygen species (ROS), reactive nitrogen species (RNS), reactive sulfur species (RSS), ROS/RSS, and even enzymes. We designed and synthesized five representative water-soluble and organelle-targeted compounds, PMB, PMN, PMD, PRB, and PME, with emission wavelengths of these fluorescent probes varying from blue to red (465, 480, 535, 550, 565, and 640 nm). This strategy could be exemplified by its application to develop a mitochondria-/lysosome-targeting multifunctional fluorescent probe capable of imaging bioactive species of interest in live cells and nude mice.
Collapse
Affiliation(s)
- Dan Qiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
- Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
| | - Landie Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
- Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
| | - Tangliang Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
- Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
| | - Jiejie Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
- Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
| | - Hao Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
- Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
| | - Xiao Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
- Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
| | - Lu Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
- Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
| | - Qianqian Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
| | - Ning Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
- Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
| | - Luqing Shang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
- Drug Discovery Center for Infectious Disease, Nankai University, 38 Tongyan Road, Haihe Education Park, Tianjin 300350, People’s Republic of China
| |
Collapse
|
17
|
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
18
|
Wu Z, Liu M, Liu Z, Tian Y. Real-Time Imaging and Simultaneous Quantification of Mitochondrial H 2O 2 and ATP in Neurons with a Single Two-Photon Fluorescence-Lifetime-Based Probe. J Am Chem Soc 2020; 142:7532-7541. [PMID: 32233469 DOI: 10.1021/jacs.0c00771] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial oxidative stress and energy metabolism are vital biological events and are involved in various physiological and pathological processes such as apoptosis and necrosis. However, it remains unclear how the dynamic patterns of mitochondrial hydrogen peroxide (H2O2) and adenosine-5'-triphosphate (ATP) change in these events and, more importantly, how they affect each other. Herein, we developed a single two-photon fluorescence-lifetime-based probe (TFP), which offered real-time imaging and the simultaneous determination of mitochondrial H2O2 and ATP changes in two well-separated fluorescence channels without spectral crosstalk. The fluorescence lifetime of TFP exhibited good responses and selectivity in the detection ranges of 0.4-10 μM H2O2 and 0.5-15 mM ATP, taking advantage of accuracy and the quantitative ability of fluorescence lifetime imaging. Using this useful probe, we studied the relationship between H2O2 and ATP in mitochondria and visualized the dynamic level changes of mitochondrial H2O2 and ATP induced by the superoxide anion (O2•-). It was discovered that O2•- stimulation in a short period of time (8 min) temporarily changes the levels of H2O2 and ATP in mitochondria, and neurons were capable of recovering to the initial state in a short time. However, increasing time of up to 50 min of O2•- stimulation led to permanent oxidative damage and an energy deficiency. Meanwhile, it was first found that the exogenous stimulation of O2•- and H2O2 had different impacts on the levels of mitochondrial H2O2 and ATP, in which O2•- demonstrated more severe and negative consequences. As a matter of fact, this work not only has provided a general molecular design methodology for multiple species imaging but also has revealed oxidative-stress-induced intracellular functions related to H2O2 and ATP in mitochondria based on this developed TFP probe.
Collapse
Affiliation(s)
- Zhou Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
19
|
Kolluru GK, Shen X, Kevil CG. Reactive Sulfur Species: A New Redox Player in Cardiovascular Pathophysiology. Arterioscler Thromb Vasc Biol 2020; 40:874-884. [PMID: 32131614 PMCID: PMC7098439 DOI: 10.1161/atvbaha.120.314084] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hydrogen sulfide has emerged as an important gaseous signaling molecule and a regulator of critical biological processes. However, the physiological significance of hydrogen sulfide metabolites such as persulfides, polysulfides, and other reactive sulfur species (RSS) has only recently been appreciated. Emerging evidence suggests that these RSS molecules may have similar or divergent regulatory roles compared with hydrogen sulfide in various biological activities. However, the chemical nature of persulfides and polysulfides is complex and remains poorly understood within cardiovascular and other pathophysiological conditions. Recent reports suggest that RSS can be produced endogenously, with different forms having unique chemical properties and biological implications involving diverse cellular responses such as protein biosynthesis, cell-cell barrier functions, and mitochondrial bioenergetics. Enzymes of the transsulfuration pathway, CBS (cystathionine beta-synthase) and CSE (cystathionine gamma-lyase), may also produce RSS metabolites besides hydrogen sulfide. Moreover, CARSs (cysteinyl-tRNA synthetase) are also able to generate protein persulfides via cysteine persulfide (CysSSH) incorporation into nascently formed polypeptides suggesting a new biologically relevant amino acid. This brief review discusses the biochemical nature and potential roles of RSS, associated oxidative stress redox signaling, and future research opportunities in cardiovascular disease.
Collapse
Affiliation(s)
- Gopi K Kolluru
- From the Department of Pathology and Translational Pathobiology, Shreveport, LA
| | - Xinggui Shen
- From the Department of Pathology and Translational Pathobiology, Shreveport, LA
| | - Christopher G Kevil
- From the Department of Pathology and Translational Pathobiology, Shreveport, LA
| |
Collapse
|
20
|
Huang X, Liu H, Liu G, Wang R, Fan C, Pu S. A colorimetric and fluorescent probe for selective sensing and imaging of hydrogen polysulfides. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Wu Q, Zhang KY, Dai P, Zhu H, Wang Y, Song L, Wang L, Liu S, Zhao Q, Huang W. Bioorthogonal “Labeling after Recognition” Affording an FRET-Based Luminescent Probe for Detecting and Imaging Caspase-3 via Photoluminescence Lifetime Imaging. J Am Chem Soc 2019; 142:1057-1064. [DOI: 10.1021/jacs.9b12191] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qi Wu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Kenneth Yin Zhang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Peiling Dai
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Hengyu Zhu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Yun Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Linna Song
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Ling Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Xi’an Institute of Flexible Electronics (XIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| |
Collapse
|
22
|
Extracellular Oxygen Sensors Based on PtTFPP and Four-Arm Block Copolymers. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9204404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Three four-arm amphiphilic block copolymers with different chain lengths, consisting of a hydrophilic chain of polyethylene glycol (PEG) and hydrophobic segment of polycaprolactam (PCL), were synthesized and used to encapsulate the high-efficient and hydrophobic oxygen probe of platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin (PtTFPP) to form polymer micelles. This approach enabled the use of PtTFPP in aqueous solution for biosensing. Experimental results demonstrated that the particle sizes of these nano-oxygen sensors between 40.0 and 203.8 nm depend on the structures of block copolymers. PtTFPP in these micelles showed an effective quantum yield under nitrogen environment, ranging from 0.06 to 0.159. The new sensors are suitable for analyzing dissolved oxygen concentrations in the range of 0.04–39.3 mg/L by using the linear Stern–Volmer equation at room temperature. In addition, it has been shown that these sensors are capable of in situ monitoring the dissolved oxygens in the culture medium of E. coli and Romas cells during the respiration process, and distinguishing the drug activity of antibiotic ampicillin from that of antimycin A. This study showed that the use of these nanostructured multi-arm block copolymer micelles can achieve efficient biological applications without specific structural modification of the hydrophobic PtTFPP probe, which is expected to have broad prospects.
Collapse
|
23
|
Xie Y, Huang H, Ismail I, Sun H, Yi L, Xi Z. A fluorogenic H2S-triggered prodrug based on thiolysis of the NBD amine. Bioorg Med Chem Lett 2019; 29:126627. [DOI: 10.1016/j.bmcl.2019.126627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/08/2019] [Accepted: 08/16/2019] [Indexed: 01/29/2023]
|
24
|
Jin X, Zhao S, Wang T, Si L, Liu Y, Zhao C, Zhou H, Leng X, Zhang X. Near-infrared fluorescent probe for selective detection of H2S and its application in living animals. Anal Bioanal Chem 2019; 411:5985-5992. [DOI: 10.1007/s00216-019-01973-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
|
25
|
Gao P, Pan W, Li N, Tang B. Fluorescent probes for organelle-targeted bioactive species imaging. Chem Sci 2019; 10:6035-6071. [PMID: 31360411 PMCID: PMC6585876 DOI: 10.1039/c9sc01652j] [Citation(s) in RCA: 387] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
The dynamic fluctuations of bioactive species in living cells are associated with numerous physiological and pathological phenomena. The emergence of organelle-targeted fluorescent probes has significantly facilitated our understanding on the biological functions of these species. This review describes the design, applications, challenges and potential directions of organelle-targeted bioactive species probes.
Bioactive species, including reactive oxygen species (ROS, including O2˙–, H2O2, HOCl, 1O2, ˙OH, HOBr, etc.), reactive nitrogen species (RNS, including ONOO–, NO, NO2, HNO, etc.), reactive sulfur species (RSS, including GSH, Hcy, Cys, H2S, H2Sn, SO2 derivatives, etc.), ATP, HCHO, CO and so on, are a highly important category of molecules in living cells. The dynamic fluctuations of these molecules in subcellular microenvironments determine cellular homeostasis, signal conduction, immunity and metabolism. However, their abnormal expressions can cause disorders which are associated with diverse major diseases. Monitoring bioactive molecules in subcellular structures is therefore critical for bioanalysis and related drug discovery. With the emergence of organelle-targeted fluorescent probes, significant progress has been made in subcellular imaging. Among the developed subcellular localization fluorescent tools, ROS, RNS and RSS (RONSS) probes are highly attractive, owing to their potential for revealing the physiological and pathological functions of these highly reactive, interactive and interconvertible molecules during diverse biological events, which are rather significant for advancing our understanding of different life phenomena and exploring new technologies for life regulation. This review mainly illustrates the design principles, detection mechanisms, current challenges, and potential future directions of organelle-targeted fluorescent probes toward RONSS.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Institute of Molecular and Nano Science , Shandong Normal University , Jinan 250014 , P. R. China . ;
| |
Collapse
|
26
|
Gao M, Zhang X, Wang Y, Liu Q, Yu F, Huang Y, Ding C, Chen L. Sequential Detection of Superoxide Anion and Hydrogen Polysulfides under Hypoxic Stress via a Spectral-Response-Separated Fluorescent Probe Functioned with a Nitrobenzene Derivative. Anal Chem 2019; 91:7774-7781. [DOI: 10.1021/acs.analchem.9b01189] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Min Gao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingluan Liu
- The Third Division of Clinical Medicine, China Medical University, Shenyang 110122, China
| | - Fabiao Yu
- Institute of Functional Materials and Molecular Imaging, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China
| | - Yan Huang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
27
|
Wei L, Tian Y, Yan W, Cheung K, Ho D. Liquid-core waveguide TCSPC sensor for high-accuracy fluorescence lifetime analysis. Anal Bioanal Chem 2019; 411:3641-3652. [PMID: 31037372 DOI: 10.1007/s00216-019-01847-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/14/2019] [Accepted: 04/12/2019] [Indexed: 10/26/2022]
Abstract
Liquid-core waveguide (LCW) has many advantages such as the elimination of optical artifacts typically exhibited in systems employing lenses and filters. However, due to the effect of temporal dispersion, LCWs are typically employed in steady-state fluorescence detection microsystems rather than in fluorescence lifetime measurement (FLM) systems. In this paper, we present a compact liquid-core waveguide time-correlated single-photon counting (LCW-TCSPC) sensor for FLM. The propagation of excitation within the LCW is analyzed both analytically and in simulations, with results in agreement with experimental characterization. Results reveal an optimal region within the LCW for highly accurate FLM. The proposed prototype achieves excellent excitation rejection and low temporal dispersion as a result of optimization of the propagation length of the excitation within the LCW. The prototype achieves a detection limit of 5 nM for Coumarin 6 in dimethyl sulfoxide with < 3% lifetime error. The techniques proposed for analyzing the LCW for TCSPC based FLM and prototype demonstration pave the way for developing high-performance fluorescence lifetime measurement for microfluidics and point-of-care applications. Graphical abstract A compact liquid-core waveguide time-correlated single-photon counting (LCW-TCSPC) sensor for fluorescence lifetime measurement (FLM) is presented. Results reveal an optimal propagation length region within the LCW for highly accurate FLM. The prototype achieves a detection limit of 5 nM for Coumarin 6 in dimethyl sulfoxide with < 3% lifetime error.
Collapse
Affiliation(s)
- Liping Wei
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Yi Tian
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Wenrong Yan
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Kawai Cheung
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Derek Ho
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
28
|
Li JB, Wang Q, Liu HW, Yuan L, Zhang XB. A bioluminescent probe for imaging endogenous hydrogen polysulfides in live cells and a murine model of bacterial infection. Chem Commun (Camb) 2019; 55:4487-4490. [PMID: 30912542 DOI: 10.1039/c9cc01699f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, we report the first bioluminescent probe BP-PS for detecting H2Sn with high specificity and sensitivity. Owing to the bioluminescence imaging without requiring an excitation light source, tissue autofluorescence is eliminated and BP-PS shows a high signal-to-noise ratio. Moreover, BP-PS was successfully utilized to visualize endogenous H2Sn in live cells and a murine model of bacterial infection.
Collapse
Affiliation(s)
- Jun-Bin Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | | | | | | |
Collapse
|
29
|
Hou P, Wang J, Fu S, Liu L, Chen S. A new turn-on fluorescent probe with ultra-large fluorescence enhancement for detection of hydrogen polysulfides based on dual quenching strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:342-346. [PMID: 30716645 DOI: 10.1016/j.saa.2019.01.081] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/17/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Based on dual quenching strategy (ESIPT inhibited quenching and PET quenching), we have developed a new turn-on fluorescent probe 1. Combining 3-(benzo[d]thiazol-2-yl)-10-butyl-10H-phenothiazin-2-ol (dye 2) as the fluorophore and 2-fluoro-5-nitro-benzoic as the recognition moiety, probe 1 had feature of notable large Stokes shift, highly sensitivity and selective for monitoring H2Sn with remarkable fluorescence enhancement (328-fold) response at 534 nm. Probe 1 exhibited excellent performance in the quantitative detection of H2Sn with a 137 nm Stokes shift and a low detection limit of 26 nM in solution. Finally, probe 1 was successfully utilized to image H2Sn in living A549 cells and zebrafish.
Collapse
Affiliation(s)
- Peng Hou
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Jing Wang
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Shuang Fu
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Lei Liu
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, 333 Bukui Street, Qiqihar, Heilongjiang Province 161006, PR China.
| |
Collapse
|
30
|
Misak A, Kurakova L, Goffa E, Brezova V, Grman M, Ondriasova E, Chovanec M, Ondrias K. Sulfide (Na₂S) and Polysulfide (Na₂S₂) Interacting with Doxycycline Produce/Scavenge Superoxide and Hydroxyl Radicals and Induce/Inhibit DNA Cleavage. Molecules 2019; 24:molecules24061148. [PMID: 30909480 PMCID: PMC6470963 DOI: 10.3390/molecules24061148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/07/2023] Open
Abstract
Doxycycline (DOXY) is an antibiotic routinely prescribed in human and veterinary medicine for antibacterial treatment, but it has also numerous side effects that include oxidative stress, inflammation, cancer or hypoxia-induced injury. Endogenously produced hydrogen sulfide (H₂S) and polysulfides affect similar biological processes, in which reactive oxygen species (ROS) play a role. Herein, we have studied the interaction of DOXY with H₂S (Na₂S) or polysulfides (Na₂S₂, Na₂S₃ and Na₂S₄) to gain insights into the biological effects of intermediates/products that they generate. To achieve this, UV-VIS, EPR spectroscopy and plasmid DNA (pDNA) cleavage assay were employed. Na₂S or Na₂S₂ in a mixture with DOXY, depending on ratio, concentration and time, displayed bell-shape kinetics in terms of producing/scavenging superoxide and hydroxyl radicals and decomposing hydrogen peroxide. In contrast, the effects of individual compounds (except for Na₂S₂) were hardly observable. In addition, DOXY, as well as oxytetracycline and tetracycline, interacting with Na₂S or other studied polysulfides reduced the •cPTIO radical. Tetracyclines induced pDNA cleavage in the presence of Na₂S. Interestingly, they inhibited pDNA cleavage induced by other polysulfides. In conclusion, sulfide and polysulfides interacting with tetracyclines produce/scavenge free radicals, indicating a consequence for free radical biology under conditions of ROS production and tetracyclines administration.
Collapse
Affiliation(s)
- Anton Misak
- Institute of Clinical and Translational Research, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | - Lucia Kurakova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia.
| | - Eduard Goffa
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | - Vlasta Brezova
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, 812 37 Bratislava, Slovakia.
| | - Marian Grman
- Institute of Clinical and Translational Research, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | - Elena Ondriasova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 832 32 Bratislava, Slovakia.
| | - Miroslav Chovanec
- Cancer Research Institute, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | - Karol Ondrias
- Institute of Clinical and Translational Research, Biomedical Research Center, University Science Park for Biomedicine, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| |
Collapse
|
31
|
Ge L, Tian Y. Fluorescence Lifetime Imaging of p-tau Protein in Single Neuron with a Highly Selective Fluorescent Probe. Anal Chem 2019; 91:3294-3301. [DOI: 10.1021/acs.analchem.8b03992] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lihong Ge
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
32
|
Jiang Y, Ji X, Zhang C, Xi Z, Sun L, Yi L. Dual-quenching NBD-based fluorescent probes for separate detection of H2S and Cys/Hcy in living cells. Org Biomol Chem 2019; 17:8435-8442. [DOI: 10.1039/c9ob01535c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dual-quenching fluorescent probes based on thiolysis of NBD thioether/ether/amine for fast and separate detection of H2S and Cys/Hcy in living cells were rationally constructed.
Collapse
Affiliation(s)
- Yaqing Jiang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiuru Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin
- China
| | - Changyu Zhang
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
- National Pesticide Engineering Research Center (Tianjin)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin
| | - Lu Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin
- China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites
- Beijing University of Chemical Technology
- Beijing 100029
- China
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology
| |
Collapse
|
33
|
Chen W, Fu L, Chen C, Xiao J, Li W, Zhang L, Xiao Q, Huang C, Sheng J, Song X. Unexpected reaction patterns enable simultaneous differentiation of H2S, H2Sn and biothiols. Chem Commun (Camb) 2019; 55:8130-8133. [DOI: 10.1039/c9cc03054a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A robust fluorescent probe, MCP1, was developed for triple-detection of H2S, H2Sn and biothiols for the first time.
Collapse
Affiliation(s)
- Wenqiang Chen
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- Nanning Normal University
- Nanning 530001
- China
| | - Li Fu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- Nanning Normal University
- Nanning 530001
- China
| | - Chunfei Chen
- Guangxi Zhuang Autonomous Region Environmental Monitoring Centre
- Nanning
- China
| | - Junan Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- Nanning Normal University
- Nanning 530001
- China
| | - Wenxiu Li
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- China
| | - Liangliang Zhang
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- Nanning Normal University
- Nanning 530001
- China
| | - Chusheng Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- Nanning Normal University
- Nanning 530001
- China
| | - Jiarong Sheng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics
- Nanning Normal University
- Nanning 530001
- China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- China
| |
Collapse
|