1
|
Chen L, Jin F, Luo Q, Luo Y, Zhang Q, Li R, Liu T, Li Y, He B. Novel Cyclopropene Probes as Chemical Reporters for Bioorthogonal Metabolic Labeling of Benzoylated Post-Translational Modification. Anal Chem 2025; 97:6410-6417. [PMID: 40106725 DOI: 10.1021/acs.analchem.4c04707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Lysine benzoylation (Kbz) is a recently identified post-translational modification on a histone that plays a crucial role in regulating cellular processes. Current detection methods primarily rely on mass spectrometry, which limits the ability to dynamically track lysine benzoylation within living cells. Although azide/alkyne small-sized probes have enabled in vitro labeling of various protein acylated modifications, their use in dynamic tracking in cellular levels is limited. Herein, we report a novel 1-methylcyclopropene chemical reporter that undergoes an IEDDA reaction with S-tetrazine-BODIPY 8, which was evaluated for its optical properties, kinetic constants, and bio-orthogonality, revealing it to be the most efficient benzoic acid probe 2. In addition, when SIRT2 acts on the peptides labeled with probe 2, the kinetic parameters of these peptides are comparable to those of endogenously benzoylated peptides. Finally, the metabolic labeling of lysine benzoylation was successfully validated in RAW and HepG2 cells using probe 2. Furthermore, by using a SIRT2 inhibitor, it was confirmed that this metabolic labeling can be applied to dynamically detect changes in lysine benzoylation levels in cells. These findings provide a solid foundation for the development of novel metabolic labeling strategies for dynamically tracking post-translational modifications, particularly in live cells.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, School of Pharmacy, Guizhou Medical University, Guiyang, Guian New Area 561113, China
| | - Fei Jin
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, School of Pharmacy, Guizhou Medical University, Guiyang, Guian New Area 561113, China
| | - Qinggen Luo
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, School of Pharmacy, Guizhou Medical University, Guiyang, Guian New Area 561113, China
| | - Yongxiang Luo
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, School of Pharmacy, Guizhou Medical University, Guiyang, Guian New Area 561113, China
| | - Qingqing Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, School of Pharmacy, Guizhou Medical University, Guiyang, Guian New Area 561113, China
| | - Ruixi Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, School of Pharmacy, Guizhou Medical University, Guiyang, Guian New Area 561113, China
| | - Ting Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, School of Pharmacy, Guizhou Medical University, Guiyang, Guian New Area 561113, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guian New Area 561113, China
| | - Bin He
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, School of Pharmacy, Guizhou Medical University, Guiyang, Guian New Area 561113, China
| |
Collapse
|
2
|
Yan L, Sun Y, Ding K, Peng T. Bioorthogonal chemical reporters for profiling retinoic acid-modified and retinoic acid-interacting proteins. Bioorg Med Chem 2025; 119:118065. [PMID: 39808893 DOI: 10.1016/j.bmc.2025.118065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Vitamin A and its primary active derivative, all-trans retinoic acid (RA), are endogenous signaling molecules essential for numerous biological processes, including cell proliferation, differentiation, and immune modulation. Owing to its differentiation-inducing effect, RA was the first differentiating agent approved for the clinical treatment of acute myeloid leukemia. While the classical mechanisms of RA signaling involve nuclear receptors, such as retinoic acid receptors (RARs), emerging evidence suggests that RA also engages in non-covalent and covalent interactions with a broader range of proteins. However, tools for thoroughly characterizing these interactions have been lacking, and a comprehensive understanding of the landscape of RA-modified and RA-interacting proteins remains limited. Here, we report the development of two RA-based chemical reporters, RA-yne and RA-diazyne, to profile RA-modified and RA-interacting proteins, respectively, in live cells. RA-yne features a clickable alkyne group for metabolic labeling of RA-modified proteins, while RA-diazyne incorporates a photoactivatable diazirine and an alkyne handle for crosslinking and capturing RA-interacting proteins. Using quantitative proteomics, we demonstrate the high-throughput identification of these proteins, revealing that non-covalent interactions are more prevalent than covalent modifications. Our global profiling also uncovers a large number of RA-interacting proteins mainly enriched in pathways related to mitochondrial processes, ER homeostasis, and lipid metabolism. Overall, this work introduces new RA-derived chemical reporters, expands the resource for studying RA biology, and enhances our understanding of RA-associated pathways in health and disease.
Collapse
Affiliation(s)
- Long Yan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yanan Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ke Ding
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Zhou YF, Yuan S, Ma B, Gao J, Wang C. Chemical proteomic profiling of lysine crotonylation using minimalist bioorthogonal probes in mammalian cells. Chem Sci 2025; 16:2843-2849. [PMID: 39817196 PMCID: PMC11730115 DOI: 10.1039/d4sc06745b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
Protein lysine crotonylation has been found to be closely related to the occurrence and development of various diseases. Currently, site identification of crotonylation is mainly dependent on antibody enrichment; however, due to the cost, heterogeneity, and specificity of antibodies, it is desired to develop an alternative chemical tool to detect crotonylation. Herein, we report an alkynyl-functionalized bioorthogonal chemical probe, Cr-alkyne, for the detection and identification of protein lysine crotonylation in mammalian cells. Our in-gel fluorescence and chemical proteomic analyses demonstrated that Cr-alkyne can be metabolically incorporated into lysine of histones and directly label known crotonylated proteins. We further applied Cr-alkyne to the proteome-wide profiling of crotonylation and revealed a large number of previously unreported modification sites, some of which could be validated by co-elution with synthetic peptides. Moreover, by integrating Cr-alkyne with quantitative chemical proteomics, we also explored the crotonylation sites regulated by HDACs, unveiling new HDAC regulated sites. Our study thus provides an enabling chemical tool for characterizing protein crotonylation and greatly expands our understanding of substrate proteins and functions of this important modification.
Collapse
Affiliation(s)
- Yuan-Fei Zhou
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Shouli Yuan
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| | - Bin Ma
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jinjun Gao
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University Beijing 100871 China
| |
Collapse
|
4
|
Xu Y, Peng T. Preparation of Protein Lysates Using Biorthogonal Chemical Reporters for Click Reaction and in-Gel Fluorescence Analysis. Bio Protoc 2024; 14:e5114. [PMID: 39600982 PMCID: PMC11588576 DOI: 10.21769/bioprotoc.5114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 11/29/2024] Open
Abstract
Bioorthogonal chemical reporters are non-native chemical handles introduced into biomolecules of living systems, typically through metabolic or protein engineering. These functionalities can undergo bioorthogonal reactions, such as copper-catalyzed alkyne-azide cycloaddition (CuAAC), with small-molecule probes, enabling the tagging and visualization of biomolecules. This approach has greatly enhanced our understanding of cellular dynamics, enzyme targeting, and protein post-translational modifications. Herein, we report a protocol for preparing protein lysates for click reaction and in-gel fluorescence analysis, exemplified using alk-16, a terminal alkyne-functionalized stearic acid analog, to investigate proteins with fatty acylation. This protocol provides methods for the fluorescent visualization of chemical reporter-labeled proteomes or individual proteins of interest (POIs). Key features • Metabolic incorporation of bioorthogonal chemical reporters into proteins in living cells. • Visualization of proteomes or specific proteins labeled with chemical reporters via in-gel fluorescence analysis. • Reliable, non-radioactive methods for investigating protein fatty acylation and other post-translational modifications.
Collapse
Affiliation(s)
- Yaxin Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
5
|
Qin Z, Ren H, Zhao P, Wang K, Liu H, Miao C, Du Y, Li J, Wu L, Chen Z. Current computational tools for protein lysine acylation site prediction. Brief Bioinform 2024; 25:bbae469. [PMID: 39316944 PMCID: PMC11421846 DOI: 10.1093/bib/bbae469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/20/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
As a main subtype of post-translational modification (PTM), protein lysine acylations (PLAs) play crucial roles in regulating diverse functions of proteins. With recent advancements in proteomics technology, the identification of PTM is becoming a data-rich field. A large amount of experimentally verified data is urgently required to be translated into valuable biological insights. With computational approaches, PLA can be accurately detected across the whole proteome, even for organisms with small-scale datasets. Herein, a comprehensive summary of 166 in silico PLA prediction methods is presented, including a single type of PLA site and multiple types of PLA sites. This recapitulation covers important aspects that are critical for the development of a robust predictor, including data collection and preparation, sample selection, feature representation, classification algorithm design, model evaluation, and method availability. Notably, we discuss the application of protein language models and transfer learning to solve the small-sample learning issue. We also highlight the prediction methods developed for functionally relevant PLA sites and species/substrate/cell-type-specific PLA sites. In conclusion, this systematic review could potentially facilitate the development of novel PLA predictors and offer useful insights to researchers from various disciplines.
Collapse
Affiliation(s)
- Zhaohui Qin
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Haoran Ren
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Pei Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences (CAAS), Anyang 455000, China
| | - Kaiyuan Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Huixia Liu
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Chunbo Miao
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanxiu Du
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Junzhou Li
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Liuji Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhen Chen
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Molecular Breeding and High Efficiency Production, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
6
|
Ju Z, Wang SY. Prediction of lysine HMGylation sites using multiple feature extraction and fuzzy support vector machine. Anal Biochem 2023; 663:115032. [PMID: 36592921 DOI: 10.1016/j.ab.2022.115032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Protein 3-hydroxyl-3-methylglutarylation (HMGylation) is newly discovered lysine acylation modification in mitochondrion. The accurate identification of HMGylation sites is the premise and key to further explore the molecular mechanisms of HMGylation. In this study, a novel bioinformatics tool named HMGPred is developed to predict HMGylation sites. Multiple effective features, including amino acid composition, amino acid factors, binary encoding, and the composition of k-spaced amino acid pairs, are integrated to encode HMGylation sites. And F-score feature ranking with incremental feature selection was used to eliminate redundant features. Moreover, a fuzzy support vector machine algorithm is used to effectively reduce the influence of noise problem by assigning different samples to different fuzzy membership degrees. As illustrated by 10-fold cross-validation, HMGPred achieves a satisfactory performance with an area under receiver operating characteristic curve of 0.9110. Feature analysis indicates that some k-spaced amino acid pair features, such as 'KxxxT' and 'DxxxE', play a critical role in the prediction of HMGylation sites. The results of prediction and analysis might be helpful for investigating the mechanisms of HMGylation. For the convenience of experimental researchers, HMGPred is implemented as a web server at http://123.206.31.171/HMGPred/.
Collapse
Affiliation(s)
- Zhe Ju
- College of Science, Shenyang Aerospace University, 110136, People's Republic of China.
| | - Shi-Yun Wang
- College of Science, Shenyang Aerospace University, 110136, People's Republic of China
| |
Collapse
|
7
|
Umezawa K, Tsumoto H, Kawakami K, Miura Y. A chemical probe for proteomic analysis and visualization of intracellular localization of lysine-succinylated proteins. Analyst 2022; 148:95-104. [PMID: 36468704 DOI: 10.1039/d2an01370c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein acylation is a vital post-translational modification that regulates various protein functions. In particular, protein succinylation has attracted significant attention because of its potential relationship with various biological events and diseases. In this report, we establish a new method for the comprehensive detection and analysis of potentially succinylated proteins using a chemical tagging technology. The newly synthesized alkyne-containing succinyl substrate successfully labeled lysine residues of proteins through intracellular metabolic labeling independent of other acylation pathways such as protein malonylation. Furthermore, reporter molecules such as biotin moieties and fluorescent dyes were conjugated to alkyne-tagged succinylated proteins via Click reactions, permitting enrichment for proteomic analysis and fluorescence imaging of the labeled proteins. We successfully analyzed and identified numerous potential succinylated proteins associated with various biological processes using gel electrophoresis, proteomic and bioinformatic analyses, and their visualization in cells.
Collapse
Affiliation(s)
- Keitaro Umezawa
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan.
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan.
| | - Kyojiro Kawakami
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan.
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, Japan.
| |
Collapse
|
8
|
Moreno-Yruela C, Bæk M, Monda F, Olsen CA. Chiral Posttranslational Modification to Lysine ε-Amino Groups. Acc Chem Res 2022; 55:1456-1466. [PMID: 35500056 DOI: 10.1021/acs.accounts.2c00115] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ConspectusThe sophistication of proteomic analysis has revealed that protein lysine residues are posttranslationally modified by a variety of acyl groups. Protein lysine acetylation regulates metabolism, gene expression, and microtubule formation and has been extensively studied; however, the understanding of the biological significance of other acyl posttranslational modifications (PTMs) is still in its infancy. The acylation of lysine residues is mediated either by acyltransferase "writer" enzymes or by nonenzymatic mechanisms and hydrolase enzymes, termed "erasers", that cleave various acyl PTMs to reverse the modified state. We have studied the human lysine deacylase enzymes, comprising the 11 Zn2+-dependent histone deacetylases (HDACs) and the 7 NAD+-consuming sirtuins (SIRTs), over the past decade. We have thus developed selective inhibitors and molecular probes and have studied the acyl substrate scope of each enzyme using chemically synthesized peptide substrates and photo-cross-linking probes. Recently, we have turned our attention to PTMs containing a stereogenic center, such as ε-N-β-hydroxybutyryllysine (Kbhb) and ε-N-lactyllysine (Kla), that each comprise a pair of mirror image stereoisomers as modifications. Both modifications are found on histones, where they affect gene transcription in response to specific metabolic states, and they are found on cytosolic and mitochondrial enzymes involved in fatty acid oxidation (Kbhb) and glycolysis (Kla), respectively. Thus, chiral modifications to lysine side chains give rise to two distinct diastereomeric products, with separate metabolic origins and potentially different activities exhibited by writer and eraser enzymes. Lysine l-lactylation originates from l-lactate, a major energy carrier produced from pyruvate after glycolysis, and it is highly induced by metabolic states such as the Warburg effect. l-Lactate can possibly be activated by acyl-coenzyme A (CoA) synthetases and transferred to lysine residues by histone acetyltransferases such as p300. d-Lactylation, on the other hand, arises primarily from a nonenzymatic reaction with d-lactylglutathione, an intermediate in the glyoxalase pathway. In addition to their distinct origin, we found that both K(l-la) and K(d-la) modifications are erased by HDACs with different catalytic efficiencies. Also, K(l-bhb) and K(d-bhb) arise from different metabolites but depend on interconnected metabolic pathways, and the two stereoisomers of ε-N-3-hydroxy-3-methylglutaryllysine (Khmg) originate from a single precursor that may then be regulated differently by eraser enzymes. Distinguishing between the individual stereoisomers of PTMs is therefore of crucial importance. In the present Account, we will (1) revisit the long-standing evidence for the distinct production and dynamics of enantiomeric forms of chiral metabolites that serve as ε-N-acyllysine PTMs and (2) highlight the outstanding questions that arise from the recent literature on chiral lysine PTMs resulting from these metabolites.
Collapse
Affiliation(s)
- Carlos Moreno-Yruela
- Center for Biopharmaceuticals & Department of Drug Design of Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Michael Bæk
- Center for Biopharmaceuticals & Department of Drug Design of Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Fabrizio Monda
- Center for Biopharmaceuticals & Department of Drug Design of Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals & Department of Drug Design of Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Xie Y, Du S, Liu Z, Liu M, Xu Z, Wang X, Kee JX, Yi F, Sun H, Yao SQ. Chemical Biology Tools for Protein Lysine Acylation. Angew Chem Int Ed Engl 2022; 61:e202200303. [PMID: 35302274 DOI: 10.1002/anie.202200303] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Lysine acylation plays pivotal roles in cell physiology, including DNA transcription and repair, signal transduction, immune defense, metabolism, and many other key cellular processes. Molecular mechanisms of dysregulated lysine acylation are closely involved in the pathophysiological progress of many human diseases, most notably cancers. In recent years, chemical biology tools have become instrumental in studying the function of post-translational modifications (PTMs), identifying new "writers", "erasers" and "readers", and in targeted therapies. Here, we describe key developments in chemical biology approaches that have advanced the study of lysine acylation and its regulatory proteins (2016-2021). We further discuss the discovery of ligands (inhibitors and PROTACs) that are capable of targeting regulators of lysine acylation. Next, we discuss some current challenges of these chemical biology probes and suggest how chemists and biologists can utilize chemical probes with more discriminating capacity. Finally, we suggest some critical considerations in future studies of PTMs from our perspective.
Collapse
Affiliation(s)
- Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Shubo Du
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Zhiyang Liu
- Department of Chemistry, COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Min Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Zhiqiang Xu
- Department of Chemistry, COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Jia Xuan Kee
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| | - Fan Yi
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, China
| | - Hongyan Sun
- Department of Chemistry, COSDAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
10
|
Xie Y, Du S, Liu Z, Liu M, Xu Z, Wang X, Kee JX, Yi F, Sun H, Yao SQ. Chemical Biology Tools for Protein Lysine Acylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yusheng Xie
- Shandong University School of Basic Medical Science 250012 Jinan CHINA
| | - Shubo Du
- National University of Singapore Department of Chemistry SINGAPORE
| | - Zhiyang Liu
- City University of Hong Kong chemistry HONG KONG
| | - Min Liu
- Shandong University School of Basic Medical Sciences CHINA
| | - Zhiqiang Xu
- City University of Hong Kong Department of Chemistry HONG KONG
| | - Xiaojie Wang
- Shandong University School of Basic Medical Sciences CHINA
| | - Jia Xuan Kee
- National University of Singapore Chemistry SINGAPORE
| | - Fan Yi
- Shandong University School of basic medical sciences CHINA
| | - Hongyan Sun
- City University of Hong Kong department of chemistry HONG KONG
| | - Shao Q. Yao
- National University of Singapore Department of Chemistry 3 Science Dr. 117543 Singapore SINGAPORE
| |
Collapse
|
11
|
Sun Y, Chen Y, Peng T. A Bioorthogonal Chemical Reporter for the Detection and Identification of Protein Lactylation. Chem Sci 2022; 13:6019-6027. [PMID: 35685793 PMCID: PMC9132054 DOI: 10.1039/d2sc00918h] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
L-Lactylation is a recently discovered post-translational modification occurring on histone lysine residues to regulate gene expression. However, the substrate scope of lactylation, especially that in non-histone proteins, remains unknown, largely...
Collapse
Affiliation(s)
- Yanan Sun
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Yanchi Chen
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China
| |
Collapse
|
12
|
Li X, Li XD. Integrative Chemical Biology Approaches to Deciphering the Histone Code: A Problem-Driven Journey. Acc Chem Res 2021; 54:3734-3747. [PMID: 34553920 DOI: 10.1021/acs.accounts.1c00463] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The hereditary blueprint of a eukaryotic cell is encoded in its genomic DNA that is tightly compacted into chromatin together with histone proteins. The basic repeating units of chromatin fibers are nucleosomes, in which approximately 1.7 turns of DNA wrap around a proteinaceous octamer consisting of two copies of histones H2A, H2B, H3, and H4. Histones are extensively decorated by a variety of posttranslational modifications (PTMs, e.g., methylation, acetylation, ubiquitylation, phosphorylation, etc.), serving as one of the cellular mechanisms that regulates DNA-templated processes, including but not limited to gene transcription, DNA replication, and DNA damage repair. Most of the histone PTMs exist in dynamic fluctuations, and their on and off states are exquisitely regulated by enzymes known as "writers" and "erasers", respectively. When installed at certain sites, histone PTMs can change the local physicochemical environment and thereby directly influence the nucleosome and chromatin structures. Alternatively, histone PTMs can recruit effectors (or "readers") to signal the downstream events. A "histone code" hypothesis has been proposed in which the combinatory actions of different histone PTMs orchestrate the epigenetic landscape of cells, modulating the activity of the underlying DNA and maintaining the genome stability between generations. Accumulating evidence also suggests that malfunctions of histone PTMs are associated with the pathogenesis of human diseases, such as cancer. It is therefore important to fully decipher the histone code, namely, to dissect the regulatory mechanisms and biological functions of histone PTMs.Owing to the advances in state-of-the-art mass spectrometry, dozens of novel histone modifications have been archived during the past decade. However, most of these newly identified histone PTMs remain poorly explored. To unravel the roles played by these PTMs in histone code, key questions that have driven our study are (i) how to detect the novel histone PTMs; (ii) how to identify the enzymes that catalyze the addition (writers) and removal (erasers) of the histone PTMs along with the regulating mechanisms; (iii) what is the biological significance of the histone PTMs and how do they function, by affecting the nucleosome and chromatin dynamics or by recruiting readers; and (iv) how to develop chemical probes to interrogate the histone PTMs or even serve as potential leads for the drug discovery campaigns to treat diseases caused by abnormalities in the regulation of histone PTMs.This Account focuses on our efforts in developing and applying chemical tools and methods to answer the above questions. Specifically, we review the detection of negatively charged histone acylations by developing and applying chemical reporters; preparing homogeneous nucleosomes carrying negatively charged acylations by protein chemistry approaches and the in vitro biophysical analyses of the effects of the acylations on nucleosome structures; investigating the negatively charged acylations' influence on chromatin dynamics in vivo using yeast genetic approaches; identifying and characterizing protein-protein interactions (PPIs) mediated by histone PTMs in different biological contexts (i.e., to identify the readers and erasers) by establishing a chemical proteomics platform that is enabled by photo-cross-linking chemistry and quantitative proteomics strategies; and manipulating PTM-mediated PPIs by the structure-guided design of inhibitors. We also discuss possible future directions in our journey to fully decipher the histone code.
Collapse
Affiliation(s)
- Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077 China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077 China
| |
Collapse
|
13
|
Jing Y, Ding D, Tian G, Kwan KCJ, Liu Z, Ishibashi T, Li XD. Semisynthesis of site-specifically succinylated histone reveals that succinylation regulates nucleosome unwrapping rate and DNA accessibility. Nucleic Acids Res 2020; 48:9538-9549. [PMID: 32766790 PMCID: PMC7515725 DOI: 10.1093/nar/gkaa663] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 01/06/2023] Open
Abstract
Posttranslational modifications (PTMs) of histones represent a crucial regulatory mechanism of nucleosome and chromatin dynamics in various of DNA-based cellular processes, such as replication, transcription and DNA damage repair. Lysine succinylation (Ksucc) is a newly identified histone PTM, but its regulation and function in chromatin remain poorly understood. Here, we utilized an expressed protein ligation (EPL) strategy to synthesize histone H4 with site-specific succinylation at K77 residue (H4K77succ), an evolutionarily conserved succinylation site at the nucleosomal DNA-histone interface. We then assembled mononucleosomes with the semisynthetic H4K77succ in vitro. We demonstrated that this succinylation impacts nucleosome dynamics and promotes DNA unwrapping from the histone surface, which allows proteins such as transcription factors to rapidly access buried regions of the nucleosomal DNA. In budding yeast, a lysine-to-glutamic acid mutation, which mimics Ksucc, at the H4K77 site reduced nucleosome stability and led to defects in DNA damage repair and telomere silencing in vivo. Our findings revealed this uncharacterized histone modification has important roles in nucleosome and chromatin dynamics.
Collapse
Affiliation(s)
- Yihang Jing
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dongbo Ding
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Gaofei Tian
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ka Chun Jonathan Kwan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Toyotaka Ishibashi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
14
|
Yao B, Li Y, Niu Y, Wang L, Chen T, Guo C, Liu Q. Hypoxia-induced miR-3677-3p promotes the proliferation, migration and invasion of hepatocellular carcinoma cells by suppressing SIRT5. J Cell Mol Med 2020; 24:8718-8731. [PMID: 32596968 PMCID: PMC7412699 DOI: 10.1111/jcmm.15503] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), with life‐threatening malignant behaviours, often develops distant metastases and is the fourth most common primary cancer in the world, having taken millions of lives in Asian countries such as China. The novel miR‐3677‐3p is involved in a high‐expression‐related poor prognosis in HCC tissues and cell lines, indicating oncogenesis functions in vitro and in vivo. Initially, we confirmed the inhibition of proliferation, migration and invasion in miR‐3677‐3p knock‐down MHCC‐97H and SMMC‐7721 cell lines, which are well known for their high degree of invasiveness. Then, we reversed the functional experiments in the low‐miR‐3677‐3p‐expression Hep3B cell line via overexpressing miR‐3677‐3p. In nude mice xenograft and lung metastasis assays, we found suppressor behaviours, smaller nodules and low density of organ spread, after injection of cells transfected with shRNA‐miR‐3677‐3p. A combination of databases (Starbase, TargetScan and MiRgator) illustrated miR‐3677‐3p targets, and it was shown to suppress the expression of SIRT5 in a dual‐luciferase reporter system. To clarify the conclusions of previous ambiguous research, we up‐regulated SIRT5 in Hep3B cells, and rescue tests were established for confirmation that miR‐3677‐3p suppresses SIRT5 to enhance the migration and invasion of HCC. Interestingly, we discovered hypoxia‐induced miR‐3677‐3p up‐regulation benefited HCC malignancy and invasiveness. In conclusion, the overexpression of miR‐3677‐3p mediated SIRT5 inhibition, which could increase proliferation, migration and invasion of HCC in hypoxic microenvironments.
Collapse
Affiliation(s)
- Bowen Yao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yazhao Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yongshen Niu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tianxiang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cheng Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
15
|
Bao X, Liu Z, Zhang W, Gladysz K, Fung YME, Tian G, Xiong Y, Wong JWH, Yuen KWY, Li XD. Glutarylation of Histone H4 Lysine 91 Regulates Chromatin Dynamics. Mol Cell 2019; 76:660-675.e9. [DOI: 10.1016/j.molcel.2019.08.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/29/2019] [Accepted: 08/21/2019] [Indexed: 01/14/2023]
|
16
|
Dai Q, Zheng Z, Xia F, Liu P, Li M. A one-step specific assay for continuous detection of sirtuin 2 activity. Acta Pharm Sin B 2019; 9:1183-1192. [PMID: 31867164 PMCID: PMC6900550 DOI: 10.1016/j.apsb.2019.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/18/2022] Open
Abstract
Sirtuins (SIRTs) are nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases with diverse physiological functions. A variety of small molecules have been developed to interrogate the physiological function of SIRTs. Therefore, it is desirable to establish efficient and convenient assays to screen SIRTs modulators. In this study, we designed a series of fluorescent nonapeptide probes derived from substrates of SIRT1–SIRT3. Fluorescence increment of these probes is based on SIRT-mediated removal of the acyl side chain with fluorophore, which makes this system free of lysine-recognizing protease. Comparing the reaction of these fluorescent nonapeptide substrates with SIRT1–SIRT3 and SIRT6, it was confirmed that this assessment system was the most suitable for SIRT2 activity detection. Thus, SIRT2 was used to modify substrates by truncating the amino acids or lysine side chain of nonapeptide. Finally, two specific and efficient fluorescent probes for SIRT2, ne-D9 and ne-K4a, were developed. Evaluation of the results revealed that ne-K4a based assay was more suitable for modulators screening in vitro, while the other specific substrate ne-D9 was stable in cell lysate and could detect the activity of SIRT2 in the same. In summary, this study presents a novel strategy for detecting SIRT2 activity in vitro and in cell lysate.
Collapse
|