1
|
Liu X, Qiao P, Chen H, Gao Y, Chen H. Synthesis of C-N or C-C Spiroindolines via Rearrangement Coupling Reaction. Org Lett 2024; 26:9759-9763. [PMID: 39481044 DOI: 10.1021/acs.orglett.4c03644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Herein, we report a general approach to effectively construct C-N or C-C spiroindolines using tetrahydro-β-carbolines as starting materials via a rearrangement coupling reaction. This method is characterized by its operational simplicity and mild conditions. Notably, a wide range of anilines and indoles are suitable for this intermolecular coupling, yielding the corresponding C-N or C-C spiroindolines in good to excellent yields.
Collapse
Affiliation(s)
- Xiaoling Liu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Panpan Qiao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Hui Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
2
|
Ye S, Ma W, Shao W, Ejeromedoghene O, Fu G, Kang M. Gradient dynamic cross-linked photochromic multifunctional polyelectrolyte hydrogels for visual display and information storage application. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
3
|
Gao Z, Yan CX, Qian J, Yang H, Zhou P, Zhang J, Jiang G. Enantioselective Synthesis of Axially Chiral Sulfonamides via Atroposelective Hydroamination of Allenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zeng Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao-Xian Yan
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Jinlong Qian
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huameng Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Panpan Zhou
- College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Jinlong Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Gaoxi Jiang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
4
|
Alonso JM, Almendros P. Deciphering the Chameleonic Chemistry of Allenols: Breaking the Taboo of a Onetime Esoteric Functionality. Chem Rev 2021; 121:4193-4252. [PMID: 33630581 PMCID: PMC8479864 DOI: 10.1021/acs.chemrev.0c00986] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/19/2022]
Abstract
The allene functionality has participated in one of the most exciting voyages in organic chemistry, from chemical curiosities to a recurring building block in modern organic chemistry. In the last decades, a special kind of allene, namely, allenol, has emerged. Allenols, formed by an allene moiety and a hydroxyl functional group with diverse connectivity, have become common building blocks for the synthesis of a wide range of structures and frequent motif in naturally occurring systems. The synergistic effect of the allene and hydroxyl functional groups enables allenols to be considered as a unique and sole functionality exhibiting a special reactivity. This Review summarizes the most significant contributions to the chemistry of allenols that appeared during the past decade, with emphasis on their synthesis, reactivity, and occurrence in natural products.
Collapse
Affiliation(s)
- José M. Alonso
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pedro Almendros
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
5
|
Yan D, Wu Q, Wang D, Tang BZ. Innovative Verfahren zur Synthese von Luminogenen mit aggregationsinduzierter Emission. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202006191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong 999077 China
| | - Qian Wu
- Center for AIE Research College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong 999077 China
| | - Dong Wang
- Center for AIE Research College of Materials Science and Engineering Shenzhen University Shenzhen 518060 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction Institute of Molecular Functional Materials The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong 999077 China
| |
Collapse
|
6
|
Yan D, Wu Q, Wang D, Tang BZ. Innovative Synthetic Procedures for Luminogens Showing Aggregation-Induced Emission. Angew Chem Int Ed Engl 2021; 60:15724-15742. [PMID: 32432807 DOI: 10.1002/anie.202006191] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 12/12/2022]
Abstract
As a consequence of their intrinsic advantageous properties, luminogens that show aggregation-induced emission (AIEgens) have received increasing global interest for a wide range of applications. Whereas general synthetic methods towards AIEgens largely rely on tedious procedures and limited reaction types, various innovative synthetic methods have now emerged as complementary, and even alternative, strategies. In this Review, we systematically highlight advancements made in metal-catalyzed functionalization and metal-free-promoted pathways for the construction of AIEgens over the past five years, and briefly illustrate new perspectives in this area. The development of innovative synthetic procedures will enable the facile synthesis of AIEgens with great structural diversity for multifunctional applications.
Collapse
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Qian Wu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
7
|
Zhang X, Wang D, Shen H, Wang S, Zhou Y, Lei Y, Gao W, Liu M, Huang X, Wu H. 3,6-Diamino-7,8-dihydroisoquinoline-4-carbonitrile derivatives: unexpected facile synthesis, full-color-tunable solid-state emissions and mechanofluorochromic activities. Org Chem Front 2021. [DOI: 10.1039/d0qo01527j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A facile synthesis of novel 3,6-diamino-7,8-dihydroisoquinoline-4-carbonitrile derivatives and their solid-state emissions are presented.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Dan Wang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Hao Shen
- Bureau Veritas Consummer Products Services Shenou (Wenzhou) Co. Ltd
- Wenzhou
- 325035
- P. R. China
| | - Shuxian Wang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Yunbing Zhou
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Yunxiang Lei
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Miaochang Liu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Xiaobo Huang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| | - Huayue Wu
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou
- P. R. China
| |
Collapse
|
8
|
Zhu Y, Zhang W, Li H, Xu X, Ji S. Palladium Catalyzed Ring Expansion Reaction of Isoxazolones with Isocyanides: Synthesis of 1,3‐Oxazin‐6‐One Derivatives. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yi‐Ming Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology Soochow University Suzhou 215123 People's Republic of China
| | - Wan Zhang
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 People's Republic of China
| | - Hongkun Li
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 People's Republic of China
| | - Xiao‐Ping Xu
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 People's Republic of China
| | - Shun‐Jun Ji
- Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 People's Republic of China
| |
Collapse
|
9
|
Affiliation(s)
- José M. Alonso
- Departamento de Química Orgánica Universidad Complutense de Madrid Avda. Complutense s/n 28040 Madrid Spain
| | - María Paz Muñoz
- School of Chemistry University of East Anglia Earlham Road 4 7TJ Norwich, NR UK
| |
Collapse
|
10
|
Li B, Sun Z, Zhai Y, Jiang J, Huang Y, Meng J. Rapid decoloration and acidichromism of photochromic 3,3-diaryl-3H-pyrano[3,2-f]quinolines. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Zhao Y, Henry SA, Jin J, Clarkson GJ, Chan PWH. Brønsted Acid‐Catalyzed Cyclization of
β
‐Amino‐1,4‐enols to Oxazol‐2(3
H
)‐ones and 5‐Alkenyloxazolidin‐2‐ones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yichao Zhao
- School of ChemistryMonash University Clayton Victoria 3800 Australia
| | - Stuart Adam Henry
- Department of ChemistryUniversity of Warwick Coventry CV4 7AL United Kingdom
| | - Jianwen Jin
- School of ChemistryMonash University Clayton Victoria 3800 Australia
| | - Guy James Clarkson
- Department of ChemistryUniversity of Warwick Coventry CV4 7AL United Kingdom
| | - Philip Wai Hong Chan
- School of ChemistryMonash University Clayton Victoria 3800 Australia
- Department of ChemistryUniversity of Warwick Coventry CV4 7AL United Kingdom
| |
Collapse
|
12
|
Wu Q, Shao PL, He Y. Synthesis of 1,4,5,6-tetrahydropyridazines and pyridazines via transition-metal-free (4 + 2) cycloaddition of alkoxyallenes with 1,2-diaza-1,3-dienes. RSC Adv 2019; 9:21507-21512. [PMID: 35521294 PMCID: PMC9066181 DOI: 10.1039/c9ra02712b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/04/2019] [Indexed: 12/19/2022] Open
Abstract
We developed an economical and practical protocol for the synthesis of 1,4,5,6-tetrahydropyridazines. A diverse range of alkoxyallenes and 1,2-diaza-1,3-dienes undergo (4 + 2) cycloaddition to generate the desired products in excellent yields. The high efficiency, wide substrate scope and good functional group tolerance of this process, coupled with operational simplicity, render the method synthetically attractive. The utility of the cycloaddition is also demonstrated by the preparation of various pyridazines from 1,4,5,6-tetrahydropyridazines. We developed an economical and practical protocol for the synthesis of 1,4,5,6-tetrahydropyridazines and pyridazines via cyclization of alkoxyallenes and 1,2-diaza-1,3-dienes.![]()
Collapse
Affiliation(s)
- Qi Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
- People's Republic of China
| | - Pan-Lin Shao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
- People's Republic of China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research
- School of Pharmaceutical Sciences
- Chongqing University
- Chongqing 401331
- People's Republic of China
| |
Collapse
|