1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025; 125:4603-4764. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Jiang Y, Li H, Tang H, Zhang Q, Yang H, Pan Y, Zou C, Zhang H, Walsh PJ, Yang X. Visible-light-driven net-1,2-hydrogen atom transfer of amidyl radicals to access β-amido ketone derivatives. Chem Sci 2025; 16:962-969. [PMID: 39664809 PMCID: PMC11629091 DOI: 10.1039/d4sc04997g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Hydrogen atom transfer (HAT) processes provide an important strategy for selective C-H functionalization. Compared with the popularity of 1,5-HAT processes, however, net-1,2-HAT reactions have been reported less frequently. Herein, we report a unique visible-light-mediated net-1,2-HAT of amidyl radicals for the synthesis of β-amido ketone derivatives. Single-electron transfer (SET) to N-aryloxy amides generates nitrogen-centered radicals (N˙), which undergo a rare net-1,2-HAT to form carbon-centered radicals (C˙). The C-centered radicals are then captured by silyl enol ethers on the way to β-amido ketones. A series of β-amido ketone derivatives (33 examples, up to 97% yield) were prepared with good functional group tolerance demonstrating the synthetic utility of this method. Mechanistic studies, including EPR, radical trapping experiments, deuterium labeling and KIE measurements, suggest an intramolecular radical net-1,2-HAT pathway.
Collapse
Affiliation(s)
- Yonggang Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University Kunming 650500 P. R. China
| | - Hui Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Haoqin Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Qingyue Zhang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China Ningbo 315100 P. R. China
| | - Haitao Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Yu Pan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Chenggang Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University Kunming 650500 P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, School of Pharmacy, Yunnan University Kunming 650500 P. R. China
| |
Collapse
|
3
|
Laohapaisan P, Roy I, Nagib DA. Chiral pyrrolidines via an enantioselective Hofmann-Löffler-Freytag reaction. CHEM CATALYSIS 2024; 4:101149. [PMID: 39897703 PMCID: PMC11785401 DOI: 10.1016/j.checat.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Radical C-H aminations enable rapid access to the most common heterocycles in medicines (e.g. pyrrolidines), yet stereocontrol of these powerful transformations remains a challenge. Here, we report the discovery of the first enantio- and regio- selective C-H imination, which readily converts ketones to enantioenriched pyrrolidines. This enantioselective Hofmann-Löffler-Freytag reaction mechanism entails iminyl radical generation from an oxime by a chiral Cu catalyst that facilitates 1,5-H-atom transfer (HAT) to form a remote C-radical, regioselectively. The selective capture of this alkyl radical as an organocopper(III) complex then mediates highly stereoselective reductive elimination to unprotected pyrrolines. The broad steric and electronic scope of this remote C-H amination has been probed systematically, along with key mechanistic aspects of enantiodetermination, radical intermediacy, and atypical Cu(III) ligands that enable this uniquely selective C-N coupling. Importantly, either (1) reductions or (2) nucleophilic additions to these enantioenriched pyrrolines provide the most rapid syntheses of chiral pyrrolidines to date.
Collapse
Affiliation(s)
| | | | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
4
|
Xu KD, Gong XY, Li M, Yi L, Qin HT, Liu F. N-Directed, Radical Relay Enantioconvergent Sulfinylation of Distal C(sp 3)-H Bonds via Cobalt Catalysis. Org Lett 2024; 26:8999-9004. [PMID: 39417715 DOI: 10.1021/acs.orglett.4c03094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cobalt-catalyzed enantioconvergent cross-coupling of C(sp3)-H bonds with in situ-generated sulfenate anions is achieved to access chiral sulfoxides, which are found in the structures of many biologically active agents. The more challenging aliphatic C-H bonds as well as sterically hindered substrates containing tertiary C-H bonds could also be tolerated well. Mechanistic studies indicate that the transformation could undergo a CoIIS(O)R-mediated single-electron transfer with N-fluorocarboxamides, followed by a 1,5-hydrogen atom transfer and then a pivotal organocobalt(IV)-controlled enantioselective cross-coupling process. This novel asymmetric radical reaction for C-S bond construction could open a new door for the synthesis of sulfur-centered chiral compounds.
Collapse
Affiliation(s)
- Ke-Dong Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Xing-Yu Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Meng Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Lin Yi
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Hai-Tao Qin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
5
|
Wang PZ, Zhang Z, Jiang M, Chen JR, Xiao WJ. A General Copper-Box System for the Asymmetric Arylative Functionalization of Benzylic, Propargylic or Allenylic Radicals. Angew Chem Int Ed Engl 2024; 63:e202411469. [PMID: 39073195 DOI: 10.1002/anie.202411469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Radical-involved arylative cross-coupling reactions have recently emerged as an attractive strategy to access valuable aryl-substituted motifs. However, there still exist several challenges such as limited scope of radical precursors/acceptors, and lack of general asymmetric catalytic systems, especially regarding the multicomponent variants. Herein, we reported a general copper-Box system for asymmetric three-component arylative radical cross-coupling of vinylarenes and 1,3-enynes, with oxime carbonates and aryl boronic acids. The reactions proceed under practical conditions in the absence or presence of visible-light irradiation, affording chiral 1,1-diarylalkanes, benzylic alkynes and allenes with good enantioselectivities. Mechanistic studies imply that the copper/Box complexes play a dual role in both radical generation and ensuing asymmetric cross-coupling. In the cases of 1,3-enynes, visible-light irradiation could improve the activity of copper/Box complex toward the initial radical generation, enabling better efficiency match between radical formation and cross-coupling.
Collapse
Affiliation(s)
- Peng-Zi Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jia-Rong Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
| |
Collapse
|
6
|
Cheng Z, Zhang J, Li C, Li X, Chen P, Liu G. Copper-Catalyzed sp 2 C-H Arylation and Alkynylation of Allenes via Hydrogen Atom Abstraction. J Am Chem Soc 2024; 146:24689-24698. [PMID: 39167590 DOI: 10.1021/jacs.4c09324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Development of methods for the sp2 C-H transformations of allenes has received much attention, and it presents a powerful tool for the synthesis of complicated allene-containing bioactive molecules. With a copper-catalyzed radical relay, sp2 allenic C-H arylation and alkynylation were established herein, using various aryl boronic acids and trimethoxysilyl-substituted alkynes as carbon nucleophiles and using electrophilic N-F reagents as nitrogen-centered radical precursors. These methods featured excellent site selectivity to deliver fully substituted allenes efficiently. Moreover, with silyl-substituted allenes as substrates, a subsequent dual sp2 C-H functionalization process was established as well, which allowed for the divergent synthesis of multifunctionalized allenes, significantly expanding their chemical spaces.
Collapse
Affiliation(s)
- Zhongming Cheng
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jiajun Zhang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Can Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiang Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
7
|
Hu Y, Hervieu C, Merino E, Nevado C. Asymmetric, Remote C(sp 3)-H Arylation via Sulfinyl-Smiles Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202319158. [PMID: 38506603 DOI: 10.1002/anie.202319158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 03/21/2024]
Abstract
An efficient asymmetric remote arylation of C(sp3)-H bonds under photoredox conditions is described here. The reaction features the addition radicals to a double bond followed by a site-selective radical translocation (1,n-hydrogen atom transfer) as well as a stereocontrolled aryl migration via sulfinyl-Smiles rearrangement furnishing a wide range of chiral α-arylated amides with up to >99 : 1 er. Mechanistic studies indicate that the sulfinamide group governs the stereochemistry of the product with the aryl migration being the rate determining step preceded by a kinetically favored 1,n-HAT process.
Collapse
Affiliation(s)
- Yawen Hu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| | - Cédric Hervieu
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| | - Estíbaliz Merino
- Departamento de Química Orgánica y Química Inorgánica Instituto de Investigación Química "Andrés M. del Río" (IQAR). Facultad de Farmacia, Universidad de Alcalá Alcalá de Henares, 28805, Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. de Colmenar Viejo, Km. 9.100, 28034, Madrid, Spain
| | - Cristina Nevado
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| |
Collapse
|
8
|
Joven-Sancho D, Echeverri A, Saffon-Merceron N, Contreras-García J, Nebra N. An Organocopper(III) Fluoride Triggering C-CF 3 Bond Formation. Angew Chem Int Ed Engl 2024; 63:e202319412. [PMID: 38147576 DOI: 10.1002/anie.202319412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
Copper(III) fluorides are catalytically competent, yet elusive, intermediates in cross-coupling. The synthesis of [PPh4 ][CuIII (CF3 )3 F] (2), the first stable (isolable) CuIII -F, was accomplished via chloride addition to [CuIII (CF3 )3 (py)] (1) yielding [PPh4 ][CuIII (CF3 )3 Cl(py)] (1⋅Cl), followed by treatment with AgF. The CuIII halides 1⋅Cl and 2 were fully characterized using nuclear magnetic resonance (NMR) spectroscopy, single crystal X-ray diffraction (Sc-XRD) and elemental analysis (EA). Complex 2 proved capable of forging C-CF3 bonds from silyl-capped alkynes. In-depth mechanistic studies combining probes, theoretical calculations, trapping of intermediate 4a ([PPh4 ][CuIII (CF3 )3 (C≡CPh)]) and radical tests unveil the key role of the CuIII acetylides that undergo facile 2e- reductive elimination furnishing the trifluoromethylated alkynes (RC≡CCF3 ), which are industrially relevant synthons in drug discovery, pharma and agrochemistry.
Collapse
Affiliation(s)
- Daniel Joven-Sancho
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Andrea Echeverri
- Laboratoire de Chimie Théorique (LCT), Sorbonne Université, CNRS, 4, Place Jussieu, 75005, Paris, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse ICT-UAR2599, Université Paul Sabatier, CNRS, 31062, Toulouse Cedex, France
| | - Julia Contreras-García
- Laboratoire de Chimie Théorique (LCT), Sorbonne Université, CNRS, 4, Place Jussieu, 75005, Paris, France
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
9
|
Dong J, Liang Y, Li Y, Guan W, Zhang Q, Fu J. A Catalytic Three-Component Aminofluorination of Unactivated Alkenes with Electron-Rich Amino Sources. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305006. [PMID: 38226424 DOI: 10.1002/advs.202305006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Indexed: 01/17/2024]
Abstract
We present herein a copper-catalyzed three-component aminofluorination of unactivated alkenes with N-bromodialkylamines and readily available nucleophilic fluoride under the assistance of a bidentate auxiliary. This protocol exhibits excellent functional group tolerance toward a wide range of unactivated alkenes and N-bromodialkylamines to furnish the corresponding β-fluoroalkylamines in a highly regio- and diastereoselective manner. The appropriate choice of nucleophilic fluoro source is essential to make this reaction a reality. Further DFT calculations show that the exothermic ion exchange between external fluoride ion and Cu(II) intermediate provides additional driving force to the irreversible migratory insertion, which offsets the unfavorable reaction energetics associated with the subsequent C(sp3)-F reductive elimination. This finding offers a new avenue to catalytic intermolecular aminofluorination of unactivated alkenes with electron-rich amino sources via a remarkable reductive elimination of Cu(III) species to forge the C(sp3)-F bonds.
Collapse
Affiliation(s)
- Junchao Dong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yujie Liang
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yang Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
- Warshel Institute for Computational Biology and School of Life and Health Sciences, School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Junkai Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis and Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
10
|
Zhang D, Fan J, Shi Y, Huang Y, Fu C, Wu X, Ma S. Copper-catalyzed propargylic C-H functionalization for allene syntheses. Chem Sci 2023; 14:9191-9196. [PMID: 37655026 PMCID: PMC10466309 DOI: 10.1039/d3sc01501g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Allenenitriles bearing different synthetically versatile functional groups have been prepared smoothly from 5-alkynyl fluorosulfonamides in decent yields with an excellent chemo- and regio-selectivity under redox neutral conditions. The resulting allenenitriles can be readily converted to useful functionalized heterocycles. Based on mechanistic study, it is confirmed that this is the first example of radical-based non-activated propargylic C-H functionalization for allene syntheses.
Collapse
Affiliation(s)
- Dongjie Zhang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Junjie Fan
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Yaqi Shi
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Yankai Huang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Xiaoyan Wu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| |
Collapse
|
11
|
Du Z, Liu S, Li Y, Peng J, Sun Y, Song Y, Liu Y, Zeng X. Fluoroamide-Directed Regiodivergent C-Alkylation of Nitroalkanes. Org Lett 2023. [PMID: 37314942 DOI: 10.1021/acs.orglett.3c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, by exploiting different activation modes of fluoroamides, we achieved α- and δ-C(sp3)-H alkylation of nitroalkanes with switchable regioselectivity. Cu catalysis enabled the interception of a distal C-centered radical by a N-centered radical to couple nitroalkanes and unactivated δ-C-H bonds. In addition, imines generated in situ by fluoroamides were trapped by nitroalkanes to realize the α-C-H alkylation of amides. Both of those scalable protocols have broad substrate scopes and good functional group tolerance.
Collapse
Affiliation(s)
- Zhibin Du
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shiwen Liu
- College of Textiles and Clothing, Institute of Flexible Functional Materials, Yancheng Institute of Technology, Yancheng, Jiangsu 224000, China
| | - Yuke Li
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Junjie Peng
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yanji Sun
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yanshan Song
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yuxuan Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xiaojun Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
12
|
Wei S, Zhang G, Wang Y, You M, Wang Y, Zhou L, Zhang Z. Modular synthesis of unsaturated aza-heterocycles via copper catalyzed multicomponent cascade reaction. iScience 2023; 26:106137. [PMID: 36895640 PMCID: PMC9988680 DOI: 10.1016/j.isci.2023.106137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
The unsaturated aza-heterocycles such as tetrahydropyridines pose significant applications in both drug discovery and development. However, the methods to construct polyfunctionalized tetrahydropyridines are still limited. Herein, we report a modular synthesis of tetrahydropyridines via copper catalyzed multicomponent radical cascade reaction. The reaction features mild conditions and broad substrate scope. In addition, the reaction could scale up to gram scale with similar yield. A variety of 1,2,5,6-tetrahydropyridines with C3 and C5 substituents could be assembled from simple starting materials. More importantly, the products could serve as versatile intermediate to access various functionalized aza-heterocycles which further demonstrates its utility.
Collapse
Affiliation(s)
- Siqi Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Guocong Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Yahui Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Mengwei You
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, China
| |
Collapse
|
13
|
Pinter EN, Sheldon ZS, Modak A, Cook SP. Fluorosulfonamide-Directed Heteroarylation of Aliphatic C(sp 3)-H Bonds. J Org Chem 2023; 88:4757-4760. [PMID: 36912807 DOI: 10.1021/acs.joc.2c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Herein, we describe a formal dehydrogenative cross coupling of heterocycles with unactivated aliphatic amines. The resulting transformation enables the direct alkylation of common heterocycles by merging N-F-directed 1,5-HAT with Minisci chemistry, leading to predictable site selectivity. The reaction provides a direct route for the transformation of simple alkyl amines to value-added products under mild reaction conditions, making this an attractive option for C(sp3)-H heteroarylation.
Collapse
Affiliation(s)
- Emily N Pinter
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Zachary S Sheldon
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Atanu Modak
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Silas P Cook
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
14
|
Simons RT, Nandakumar M, Kwon K, Ayer SK, Venneti NM, Roizen JL. Directed Photochemically Mediated Nickel-Catalyzed (Hetero)arylation of Aliphatic C-H Bonds. J Am Chem Soc 2023; 145:10.1021/jacs.2c13409. [PMID: 36780585 PMCID: PMC10423309 DOI: 10.1021/jacs.2c13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Site-selective functionalization of unactivated C(sp3)-H centers is challenging because of the ubiquity and strength of alkyl C-H bonds. Herein, we disclose a position-selective C(sp3)-C(sp2) cross-coupling reaction. This process engages C(sp3)-H bonds and aryl bromides, utilizing catalytic quantities of a photoredox-capable molecule and a nickel precatalyst. Using this technology, selective C-H functionalization arises owing to a 1,6-hydrogen atom transfer (HAT) process that is guided by a pendant alcohol-anchored sulfamate ester. These transformations proceed directly from N-H bonds, in contrast to previous directed, radical-mediated, C-H arylation processes, which have relied on prior oxidation of the reactive nitrogen center in reactions with nucleophilic arenes. Moreover, these conditions promote arylation at secondary centers in good yields with excellent selectivity.
Collapse
Affiliation(s)
- R. Thomas Simons
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Meganathan Nandakumar
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Kitae Kwon
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Suraj K. Ayer
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| | - Naresh M. Venneti
- Wayne State University, Department of Chemistry, Detroit, MI 48202, United States
| | - Jennifer L. Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, NC 27708, United States (before June 2021)
| |
Collapse
|
15
|
Lokolkar MS, Kolekar YA, Jagtap PA, Bhanage BM. Cu-Catalyzed C-C Coupling Reactions. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2022_81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Sarkar S, Wagulde S, Jia X, Gevorgyan V. General and Selective Metal-Free Radical α-C-H Borylation of Aliphatic Amines. Chem 2022; 8:3096-3108. [PMID: 36571075 PMCID: PMC9784107 DOI: 10.1016/j.chempr.2022.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite recent developments, selective C(sp3)-H borylation of feedstock amines remains a formidable challenge. Herein, we have developed a general, mild, and photoinduced transition metal- and strong base-free method for α-C(sp3)-H borylation of amines. This protocol features a regioselective 1,5-hydrogen atom transfer process to access key α-aminoalkyl radical intermediate using commercially available easy-to-install/remove iodobenzoyl radical translocating group. Remarkably, this general, efficient, and operationally simple method allows activation of primary and secondary α-C-H sites of a broad range of acyclic and cyclic amines toward highly regio- and diastereoselective synthesis of valuable α-aminoboronates. Utility of this protocol has been demonstrated by its employment in late-stage borylation of structurally complex amines and formal C-H arylation reaction of amines. Thus, it is expected that this operationally simple, general, and practical method will find broad application in organic synthesis and drug discovery.
Collapse
Affiliation(s)
- Sumon Sarkar
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, BSB 13, Richardson, Texas, 75080 (USA)
| | - Sidhant Wagulde
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, BSB 13, Richardson, Texas, 75080 (USA)
| | - Xiangqing Jia
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, BSB 13, Richardson, Texas, 75080 (USA)
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, BSB 13, Richardson, Texas, 75080 (USA)
- Lead contact
| |
Collapse
|
17
|
Yang Y, Hammond GB, Umemoto T. Self-Sustaining Fluorination of Active Methylene Compounds and High-Yielding Fluorination of Highly Basic Aryl and Alkenyl Lithium Species with a Sterically Hindered N-Fluorosulfonamide Reagent. Angew Chem Int Ed Engl 2022; 61:e202211688. [PMID: 36066942 PMCID: PMC9588725 DOI: 10.1002/anie.202211688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/11/2022]
Abstract
Fluorination of carbanions is pivotal for the synthesis of fluorinated compounds, but the current N-F fluorinating agents have significant drawbacks due to many reactive locations that surround the reactive N-F site. By developing a sterically hindered N-fluorosulfonamide reagent, namely N-fluoro-N-(tert-butyl)-tert-butanesulfonamide (NFBB), we discovered a conceptually novel base-catalyzed, self-sustaining fluorination of active methylene compounds and achieved the high-yielding fluorination of the hitherto difficult highly basic (hetero)aryl and alkenyl lithium species. In the former, the mild and high yield fluorination of active methylene compounds exhibited wide functional group tolerance and its novel catalytic fluorination-deprotonation cycle mechanism was demonstrated by deuterium-tracing experiments. In the latter, NFBB reacted with a variety of highly basic (hetero)aryl and alkenyl lithium species to provide the desired fluoro (hetero)arenes and alkenes in unprecedented high or quantitative yields.
Collapse
Affiliation(s)
- Yuhao Yang
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Gerald B Hammond
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Teruo Umemoto
- Department of Chemistry, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
18
|
Yang JW, Tan GQ, Liang KC, Xu KD, Su M, Liu F. Copper-Catalyzed, N-Directed Distal C(sp 3)-H Functionalization toward Azepanes. Org Lett 2022; 24:7796-7800. [PMID: 36264027 DOI: 10.1021/acs.orglett.2c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We herein report a copper-catalyzed formal [5 + 2] aza-annulation of N-fluorosulfonamides and 1,3-dienes/1,3-enynes for synthesis of structurally diverse alkene/alkyne-containing azepanes. The reaction features selective functionalization of distal unactivated C(sp3)-H bonds and a broad substrate scope, thus allowing the late-stage modification of pharmaceuticals and natural products. A radical mechanism involving 1,5-hydrogen atom transfer of N-radicals, facile coupling of alkyl radicals with 1,3-dienes/1,3-enynes, and the construction of azepane motifs via C-N bond formation is proposed.
Collapse
Affiliation(s)
- Jia-Wen Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Guang-Qiang Tan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Kai-Cheng Liang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ke-Dong Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
19
|
Yang Y, Hammond G, Umemoto T. Self‐Sustaining Fluorination of Active Methylene Compounds andFluorination of Aryl and Alkenyl Lithium Species with a StericallyHindered N‐Fluorosulfonamide Reagent. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuhao Yang
- University of Louisville College of Arts and Sciences Chemistry UNITED STATES
| | - Gerald Hammond
- University of Louisville College of Arts and Sciences Chemistry 2320 S. Brook 40208 Louisville UNITED STATES
| | - Teruo Umemoto
- University of Louisville College of Arts and Sciences Chemistry UNITED STATES
| |
Collapse
|
20
|
Herbort JH, Bednar TN, Chen AD, RajanBabu TV, Nagib DA. γ C-H Functionalization of Amines via Triple H-Atom Transfer of a Vinyl Sulfonyl Radical Chaperone. J Am Chem Soc 2022; 144:13366-13373. [PMID: 35820104 PMCID: PMC9405708 DOI: 10.1021/jacs.2c05266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A selective, remote desaturation has been developed to rapidly access homoallyl amines from their aliphatic precursors. The strategy employs a triple H-atom transfer (HAT) cascade, entailing (i) cobalt-catalyzed metal-HAT (MHAT), (ii) carbon-to-carbon 1,6-HAT, and (iii) Co-H regeneration via MHAT. A new class of sulfonyl radical chaperone (to rapidly access and direct remote, radical reactivity) enables remote desaturation of diverse amines, amino acids, and peptides with excellent site-, chemo-, and regioselectivity. The key, enabling C-to-C HAT step in this cascade was computationally designed to satisfy both thermodynamic (bond strength) and kinetic (polarity) requirements, and it has been probed via regioselectivity, isomerization, and competition experiments. We have also interrupted this radical transfer dehydrogenation to achieve γ-selective C-Cl, C-CN, and C-N bond formations.
Collapse
Affiliation(s)
- James H Herbort
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Taylor N Bednar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew D Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - T V RajanBabu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Chen X, Wang Q, Zhang Z, Niu ZJ, Shi WY, Gong XP, Jiao RQ, Gao MH, Liu XY, Liang YM. Copper-Catalyzed Hydrogen Atom Transfer and Aryl Migration Strategy for the Arylalkylation of Activated Alkenes. Org Lett 2022; 24:4338-4343. [PMID: 35687371 DOI: 10.1021/acs.orglett.2c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we describe the copper-catalyzed arylalkylation of activated alkenes via hydrogen-atom transfer and aryl migration strategy. The reaction was carried out through a radical-mediated continuous migration pathway using N-fluorosulfonamides as the alkyl source. The primary, secondary, and tertiary alkyl radicals formed by intramolecular hydrogen-atom transfer proceeded smoothly. This methodology is an efficient approach for the synthesis of various amide derivatives possessing a quaternary carbon center with good yields and high regioselectivity.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Qiang Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao-Ping Gong
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Rui-Qiang Jiao
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ming-Hui Gao
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
22
|
Abstract
Herein, we describe the nickel-catalyzed reductive arylation of remote C(sp3)-H bonds with aryl electrophiles. The reaction targets secondary and tertiary C(sp3)-H bonds to deliver all-carbon quaternary centers. The success of this method relies on a novel amidyl radical precursor that tolerates reducing conditions, namely O-oxalate hydroxamic acid esters.
Collapse
Affiliation(s)
- Zhi-Yun Liu
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| | - Silas P. Cook
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
23
|
Wen YT, Kong XT, Liu HC, Wang CT, Wei WX, Wang B, Liu XY, Liang YM. Ni-Catalyzed Remote Radical/Cross-Electrophile Coupling Cascade for Selective C(sp 3)-H Arylation. Org Lett 2022; 24:2399-2403. [PMID: 35312326 DOI: 10.1021/acs.orglett.2c00666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An innovative 1,5-HAT cascade strategy has been advanced for the nickel-catalyzed distal arylation via cross-electrophile coupling. Through specific migration, the remote C(sp3)-H bond is regioselectively activated, and Ar-I as the available electrophile is used for the construction of the C(sp3)-C(sp2) bond. This method also has broad applicability for benzylic and aliphatic N-fluorocarboxamides with yields up to 80%. Furthermore, a series of control experiments demonstrated that this reaction is probably initiated by a radical process.
Collapse
Affiliation(s)
- Ya-Ting Wen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiang-Tao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, Anyang Normal University, Anyang 455000, China
| | - Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wan-Xu Wei
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Bin Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
24
|
Hu QP, Liu YT, Liu YZ, Pan F. Photoinduced remote regioselective radical alkynylation of unactivated C-H bonds. Chem Commun (Camb) 2022; 58:2295-2298. [PMID: 35075463 DOI: 10.1039/d1cc06885g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method for the remote regioselective alkynylation of unactivated C(sp3)-H bonds in diverse aliphatic amides by photogenerated amidyl radicals has been developed. The site-selectivity is dominated via a 1,5-hydrogen atom transfer (HAT) process of the amide. Mild reaction conditions and high regioselectivity are demonstrated in this methodology.
Collapse
Affiliation(s)
- Qu-Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu 610068, P. R. China.
| | - Yu-Tao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu 610068, P. R. China.
| | - Yong-Ze Liu
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu 610068, P. R. China.
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jingan Road, Chengdu 610068, P. R. China.
| |
Collapse
|
25
|
Zhang Z, Chen P, Liu G. Copper-catalyzed radical relay in C(sp 3)-H functionalization. Chem Soc Rev 2022; 51:1640-1658. [PMID: 35142305 DOI: 10.1039/d1cs00727k] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical-involved transition metal (TM) catalysis has greatly enabled new reactivities in recent decades. Copper-catalyzed radical relay offers enormous potential in C(sp3)-H functionalization which combines the unique regioselectivity of hydrogen atom transfer (HAT) and the versatility of copper-catalyzed cross-coupling. More importantly, significant progress has been achieved in asymmetric C-H functionalization through judicious ligand design. This tutorial review will highlight the recent advances in this rapidly growing area, and we hope this survey will inspire future strategic developments for selective C(sp3)-H functionalization.
Collapse
Affiliation(s)
- Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese, Academy of Sciences, Shanghai 200032, China.
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese, Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
26
|
Wang X, Xue Y, Hu W, Shi L, Zhu X, Hao XQ, Song MP. Cu(II)-Catalyzed N-Directed Distal C(sp 3)-H Heteroarylation of Aliphatic N-Fluorosulfonamides. Org Lett 2022; 24:1055-1059. [PMID: 35080894 DOI: 10.1021/acs.orglett.1c04280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copper-catalyzed δ-regioselective C(sp3)-H heteroarylation of N-fluorosulfonamides has been developed. A broad range of heteroarenes were well tolerated and reacted with various N-fluorosulfonamides to give the corresponding heteroarylated amides in good yields. Notably, all types (1°, 2°, and 3°) of δ-C(sp3)-H bonds in the N-fluorosulfonamides could be regioselectively activated through the 1,5-HAT process. This protocol provides a practical strategy for the functionalization of heteroarenes and amides via forging a C(sp3)-C(sp2) bond.
Collapse
Affiliation(s)
- Xu Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Yuting Xue
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Weinan Hu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
27
|
Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Enantioselective Radical Reactions Using Chiral Catalysts. Chem Rev 2022; 122:5842-5976. [DOI: 10.1021/acs.chemrev.1c00582] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shovan Mondal
- Department of Chemistry, Syamsundar College, Shyamsundar 713424, West Bengal, India
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry North Dakota State University, Fargo, North Dakota 58108, United States
| | - Michèle P. Bertrand
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Malek Nechab
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| |
Collapse
|
28
|
Man Y, Liu S, Xu B, Zeng X. N-Heterocyclic-Carbene-Catalyzed C-H Acylation via Radical Relay. Org Lett 2022; 24:944-948. [PMID: 35049310 DOI: 10.1021/acs.orglett.1c04317] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A method of N-fluorocarboxamide-directed N-heterocyclic-carbene (NHC)-catalyzed benzylic C-H acylation with aldehydes via the hydrogen atom transfer strategy is disclosed. This transformation involves a sequence of single-electron transfer, 1,5-hydrogen atom transfer, and radical cross-coupling steps. This method offers facile access to various highly functionalized ketones and exhibits good chemical yields and functional group tolerance.
Collapse
Affiliation(s)
- Yunquan Man
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Shiwen Liu
- College of Textiles and Clothing, Institute of Flexible Functional Materials, Yancheng Institute of Technology, Yancheng 224000, China
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Xiaojun Zeng
- The College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
29
|
Abstract
The majority of medicines contain a nitrogen atom within a five- or six- membered ring. To rapidly access both such aza-heterocycles, we sought to develop a remote C-H desaturation of amines. Inspired by the Hofmann-Löffler-Freytag synthesis of five-membered pyrrolidines, we tackled the century-old challenge of synthesizing six-membered piperidines by H-atom transfer. We present herein a double, vicinal C-H oxidation by dual catalysis, entailing Ir photocatalytic initiation of 1,5-HAT by an N-centered radical and Cu-catalyzed interception of the C-centered radical to facilitate desaturation. By this mechanism, two C-H bonds (δ and ε to N) are regioselectively removed from unbiased, remote positions of an alkyl chain. Over 50 examples illustrate efficiency, selectivity, functional group tolerance, and medicinal utility of this synthesis of both internal and terminal δ vinylic amines and aza-heterocycles. Mechanistic experiments probe the alkylcopper intermediate, as well as kinetics and regioselectivity of the HAT and elimination steps.
Collapse
|
30
|
Georgiou E, Spinnato D, Chen K, Melchiorre P, Muñiz K. Switchable photocatalysis for the chemodivergent benzylation of 4-cyanopyridines. Chem Sci 2022; 13:8060-8064. [PMID: 35919417 PMCID: PMC9278488 DOI: 10.1039/d2sc02698h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
We report a photocatalytic strategy for the chemodivergent radical benzylation of 4-cyanopyridines. The chemistry uses a single photoredox catalyst to generate benzyl radicals upon N–F bond activation of 2-alkyl N-fluorobenzamides. The judicious choice of different photocatalyst quenchers allowed us to select at will between mechanistically divergent processes. The two reaction manifolds, an ipso-substitution path proceeding via radical coupling and a Minisci-type addition, enabled selective access to regioisomeric C4 or C2 benzylated pyridines, respectively. Mechanistic investigations shed light on the origin of the chemoselectivity switch. We report a photocatalytic strategy for the chemodivergent radical benzylation of 4-cyanopyridines. The chemistry uses a single photoredox catalyst to generate benzyl radicals upon N–F bond activation of 2-alkyl N-fluorobenzamides.![]()
Collapse
Affiliation(s)
- Eleni Georgiou
- ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Avenida Països Catalans 16 – 43007, Tarragona, Spain
- Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili (URV), 43007, Tarragona, Spain
| | - Davide Spinnato
- ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Avenida Països Catalans 16 – 43007, Tarragona, Spain
- Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili (URV), 43007, Tarragona, Spain
| | - Kang Chen
- ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Avenida Països Catalans 16 – 43007, Tarragona, Spain
| | - Paolo Melchiorre
- ICIQ – Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Avenida Països Catalans 16 – 43007, Tarragona, Spain
- ICREA, Passeig Lluís Companys 23 – 08010, Barcelona, Spain
| | | |
Collapse
|
31
|
Rand AW, Chen M, Montgomery J. Investigations into mechanism and origin of regioselectivity in the metallaphotoredox-catalyzed α-arylation of N-alkylbenzamides. Chem Sci 2022; 13:10566-10573. [PMID: 36277638 PMCID: PMC9473500 DOI: 10.1039/d2sc01962k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
A mechanistic study on the α-arylation of N-alkylbenzamides catalyzed by a dual nickel/photoredox system using aryl bromides is reported herein. This study elucidates the origins of site-selectivity of the transformation, which is controlled by the generation of a hydrogen atom transfer (HAT) agent by a photocatalyst and bromide ions in solution. Tetrabutylammonium bromide was identified as a crucial additive and source of a potent HAT agent, which led to increases in yields and a lowering of the stoichiometries of the aryl bromide coupling partner. NMR titration experiments and Stern–Volmer quenching studies provide evidence for complexation to and oxidation of bromide by the photocatalyst, while elementary steps involving deprotonation of the N-alkylbenzamide or 1,5-HAT were ruled out through mechanistic probes and kinetic isotope effect analysis. This study serves as a valuable tool to better understand the α-arylation of N-alkylbenzamides, and has broader implications in halide-mediated C–H functionalization reactions. A mechanistic study of the α-arylation of N-alkylbenzamides catalyzed by a dual nickel/photoredox system using aryl bromides elucidates the origins of site-selectivity of the transformation and identifies the hydrogen atom transfer agent.![]()
Collapse
Affiliation(s)
- Alexander W. Rand
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - Mo Chen
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - John Montgomery
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
32
|
Wei H, Zhang Z, Zhang X, Gao S, Wang T, Zhao M, Wei P, Wang M. Copper-catalyzed intramolecular iminolactonization cyclization reactions of remote C(sp 3)–H bonds in carboxamides. Org Biomol Chem 2022; 20:8912-8916. [DOI: 10.1039/d2ob01711c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A novel and efficient synthetic method for iminolactones by copper-catalyzed intramolecular C(sp3)–H bond functionalization of carboxamides via a cascade process is reported for the first time.
Collapse
Affiliation(s)
- He Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Zhenhua Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Xiang Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Shuo Gao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Tongtong Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Mengmeng Zhao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Pifeng Wei
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Min Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| |
Collapse
|
33
|
Dolbier W, Wei S, Le S, Lei Z, Zhou L, Zhang Z. Difluoromethylarylation of α, β- Unsaturated Amides via a Photocatalytic Radical Smiles Rearrangement. Org Biomol Chem 2022; 20:2064-2068. [DOI: 10.1039/d2ob00186a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photocatalytic Smiles rearrangement, triggered by radical difluoromethylation of conjugated arylsulfonylated amides, was developed to construct both β-difluoromethyl amide and heterocyclic scaffolds selectively. This transformation features mild conditions and broad...
Collapse
|
34
|
Zhong LJ, Lv GF, Ouyang XH, Li Y, Li JH. Copper-Catalyzed Fluoroamide-Directed Remote Benzylic C-H Olefination: Facile Access to Internal Alkenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00822j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general, site-selective copper-catalyzed fluoroamide-directed remote benzylic C-H olefination of N-fluoroamides with terminal alkenes for producing internal alkenes is disclosed. This protocol proceeds via a hybrid Cu-radical mechanism, which synergistically...
Collapse
|
35
|
Zhong LJ, Xiong ZQ, Ouyang XH, Li Y, Song RJ, Sun Q, Lu X, Li JH. Intermolecular 1,2-Difunctionalization of Alkenes Enabled by Fluoroamide-Directed Remote Benzyl C(sp 3)-H Functionalization. J Am Chem Soc 2021; 144:339-348. [PMID: 34935377 DOI: 10.1021/jacs.1c10053] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A copper-catalyzed remote benzylic C-H functionalization strategy enabling 1,2-difunctionalization of alkenes with 2-methylbenzeneamides and nucleophiles, including alcohols, indoles, pyrroles, and the intrinsic amino groups, is reported, which is characterized by its redox-neutral conditions, exquisite site-selectivity, broad substrate scope, and wide utilizations of late-stage modifying bioactive molecules. This reaction proceeds through nitrogen-centered radical generation, hydrogen atom transfer, benzylic radical addition across the alkenes, single-electron oxidation, and carbocation electrophilic course cascades. While using external nucleophiles manipulates three-component alkene alkylalkoxylation and alkyl-heteroarylation with 2-methylbenzeneamides to access dialkyl ethers, 3-alkylindoles, and 3-alkylpyrroles, omitting the external nucleophiles results in two-component alkylamidation ([5+2] annulation) of alkenes with 2-methylbenzeneamides to benzo-[f][1,2]thiazepine 1,1-dioxides.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xuan-Hui Ouyang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surface & Fujian Provincial Key Laboratory for Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Hunan Normal University, Changsha 410081, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
36
|
Wang J, Fang WH, Qu LB, Shen L, Maseras F, Chen X. An Expanded SET Model Associated with the Functional Hindrance Dominates the Amide-Directed Distal sp 3 C-H Functionalization. J Am Chem Soc 2021; 143:19406-19416. [PMID: 34761900 DOI: 10.1021/jacs.1c07983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanistic understanding of catalytic radical reactions currently lags behind the flourishing development of new types of catalytic activation. Herein, an innovative single electron transfer (SET) model has been expanded by using the nonadiabatic crossing integrated with the rate-determining step of 1,5-hydrogen atom transfer (HAT) reaction to provide the control mechanism of radical decay dynamics through calculating excited-state relaxation paths of a paradigm example of the amide-directed distal sp3 C-H bond alkylation mediated by Ir-complex-based photocatalysts. The stability of carbon radical intermediates, the functional hindrance associated with the back SET, and the energy inversion between the reactive triplet and closed-shell ground states were verified to be key factors in improving catalytic efficiency via blocking radical inhibition. The expanded SET model associated with the dynamic behaviors and kinetic data could guide the design and manipulation of visible-light-driven inert bond activation by the utilization of photocatalysts bearing more or less electron-withdrawing groups and the comprehensive considerations of kinetic solvent effects and electron-withdrawing effects of substrates.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Wei-Hai Fang
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lin Shen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.,College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuebo Chen
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China.,College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
37
|
Chen GL, He SH, Cheng L, Liu F. Copper-Catalyzed N-Directed Distal C(sp 3)-H Sulfonylation and Thiolation with Sulfinate Salts. Org Lett 2021; 23:8338-8342. [PMID: 34632768 DOI: 10.1021/acs.orglett.1c03075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We herein report a selective and catalytic C(sp3)-H functionalization approach to access amines bearing organo-sulfonyl and organo-thiol groups. This reaction proceeds through a cascade process of N-radical formation, alkyl radical formation via 1,5-HAT, and C-S bond formation, thereby offering a series of functionalized amines. This method could enable primary, secondary, and tertiary C(sp3)-H sulfonylation and thiolation and also exhibits good functional group tolerance.
Collapse
Affiliation(s)
- Guang-Le Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Shi-Hui He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Liang Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
38
|
Liang L, Guo G, Li C, Wang SL, Wang YH, Guo HM, Niu HY. Copper-Catalyzed Intermolecular Alkynylation and Allylation of Unactivated C(sp 3)-H Bonds via Hydrogen Atom Transfer. Org Lett 2021; 23:8575-8579. [PMID: 34669414 DOI: 10.1021/acs.orglett.1c03298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We describe Cu-catalyzed intermolecular alkynylation and allylation of unactivated C(sp3)-H bonds with singly occupied molecular orbital-philes (SOMO-philes) via hydrogen atom transfer (HAT). Employing N-fluoro-sulfonamide as a HAT reagent, a set of substituted alkene and alkyne compounds were synthesized in high yields with good regioselectivity and functional-group compatibility. Late-stage functionalization of natural products and drug molecules is also demonstrated.
Collapse
Affiliation(s)
- Lei Liang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Ge Guo
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Song-Lin Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Yue-Hui Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Hai-Ming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan Province 453007, China
| | - Hong-Ying Niu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| |
Collapse
|
39
|
Sinha SK, Guin S, Maiti S, Biswas JP, Porey S, Maiti D. Toolbox for Distal C-H Bond Functionalizations in Organic Molecules. Chem Rev 2021; 122:5682-5841. [PMID: 34662117 DOI: 10.1021/acs.chemrev.1c00220] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transition metal catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.
Collapse
Affiliation(s)
- Soumya Kumar Sinha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
40
|
Yu F, Li C, Wang C, Zhang H, Cao ZY. (1-Selenocyanatoethyl)benzene: A Selenocyanation Reagent for Site-Selective Selenocyanation of Inert Alkyl C(sp 3)-H Bonds. Org Lett 2021; 23:7156-7160. [PMID: 34468157 DOI: 10.1021/acs.orglett.1c02564] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A new, simple, yet easily accessible, (1-selenocyanatoethyl)benzene has been designed and applied as a SeCN group transfer reagent for selenocyanation of aliphatic C(sp3)-H bonds for the first time. This protocol is featured with mild reaction conditions and wide substrate scope. Control experiments reveal that a radical-group transfer mechanism might be involved.
Collapse
Affiliation(s)
- Fei Yu
- Department of Chemistry, College of Science, China University of Petroleum (East China) Qingdao, Shandong 266580, China
| | - Chuang Li
- Department of Chemistry, College of Science, China University of Petroleum (East China) Qingdao, Shandong 266580, China
| | - Chuangye Wang
- Department of Chemistry, College of Science, China University of Petroleum (East China) Qingdao, Shandong 266580, China
| | - Hongwei Zhang
- Department of Chemistry, College of Science, China University of Petroleum (East China) Qingdao, Shandong 266580, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
41
|
Mao R, Bera S, Turla AC, Hu X. Copper-Catalyzed Intermolecular Functionalization of Unactivated C(sp 3)-H Bonds and Aliphatic Carboxylic Acids. J Am Chem Soc 2021; 143:14667-14675. [PMID: 34463489 DOI: 10.1021/jacs.1c05874] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intermolecular functionalization of C(sp3)-H bonds and aliphatic carboxylic acids enables the efficient synthesis of high value-added organic compounds from readily available starting materials. Although methods involving hydrogen atom transfer have been developed for such functionalization, these methods either work for only activated C(sp3)-H bonds or bring in a narrow set of functional groups. Here we describe a Cu-catalyzed process for the diverse functionalization of both unactivated C(sp3)-H bonds and aliphatic carboxylic acids. The process is enabled by the trapping of alkyl radicals generated through hydrogen atom abstraction by arylsulfonyl-based SOMO-philes, which introduces a large array of C, N, S, Se, and halide-based functional groups. The chemoselectivity can be switched from C-H functionalization to decarboxylative functionalization by matching the bond dissociation energy of the hydrogen atom transfer reagent with that of the target C-H or O-H bond.
Collapse
Affiliation(s)
- Runze Mao
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland
| | - Srikrishna Bera
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland
| | - Aurélya Christelle Turla
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), ISIC-LSCI, BCH 3305, Lausanne 1015, Switzerland
| |
Collapse
|
42
|
Xue Y, Shi L, Wang X, Yu X, Zhu X, Hao XQ, Song MP. Regioselective N-F and α C(sp 3)-H Arylation of Aliphatic N-Fluorosulfonamides with Imidazopyridines. Org Lett 2021; 23:6807-6812. [PMID: 34406015 DOI: 10.1021/acs.orglett.1c02381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A regioselective arylation of aliphatic N-fluorosulfonamides with imidazopyridines enabled by breaking of N-F and α C(sp3)-H bond to form C-N and C-C bonds was described. With CuCl as the catalyst, a radical mechanism was proposed to produce N-arylated aliphatic sulfonamides via a N radical intermediate. Importantly, under acidic conditions, an in situ generated imine was the possible intermediate, which was trapped by imidazopyridines to form α C(sp3)-H arylated aliphatic sulfonamides. The current protocol featured a broad substrate scope, tunable reaction conditions, operational convenience, and good regioselectivity.
Collapse
Affiliation(s)
- Yuting Xue
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Xu Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Xiaoni Yu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou 450001, P. R. China
| |
Collapse
|
43
|
Suh SE, Nkulu LE, Lin S, Krska SW, Stahl SS. Benzylic C-H isocyanation/amine coupling sequence enabling high-throughput synthesis of pharmaceutically relevant ureas. Chem Sci 2021; 12:10380-10387. [PMID: 34377424 PMCID: PMC8336431 DOI: 10.1039/d1sc02049h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022] Open
Abstract
C(sp3)–H functionalization methods provide an ideal synthetic platform for medicinal chemistry; however, such methods are often constrained by practical limitations. The present study outlines a C(sp3)–H isocyanation protocol that enables the synthesis of diverse, pharmaceutically relevant benzylic ureas in high-throughput format. The operationally simple C–H isocyanation method shows high site selectivity and good functional group tolerance, and uses commercially available catalyst components and reagents [CuOAc, 2,2′-bis(oxazoline) ligand, (trimethylsilyl)isocyanate, and N-fluorobenzenesulfonimide]. The isocyanate products may be used without isolation or purification in a subsequent coupling step with primary and secondary amines to afford hundreds of diverse ureas. These results provide a template for implementation of C–H functionalization/cross-coupling in drug discovery. A copper-based catalyst system composed of commercially available reagents enables C–H isocyanation with exquisite (hetero)benzylic site selectivity, enabling high-throughput access to pharmaceutically relevant ureas via coupling with amines.![]()
Collapse
Affiliation(s)
- Sung-Eun Suh
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison Wisconsin 53706 USA
| | - Leah E Nkulu
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison Wisconsin 53706 USA
| | - Shishi Lin
- Chemistry Capabilities for Accelerating Therapeutics, Merck & Co., Inc. 2000 Galloping Hill Road Kenilworth New Jersey 07033 USA
| | - Shane W Krska
- Chemistry Capabilities for Accelerating Therapeutics, Merck & Co., Inc. 2000 Galloping Hill Road Kenilworth New Jersey 07033 USA
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison 1101 University Avenue Madison Wisconsin 53706 USA
| |
Collapse
|
44
|
Zhang H, Yu F, Li C, Tian P, Zhou Y, Cao ZY. Iron-Catalyzed, Site-Selective Difluoromethylthiolation (-SCF 2H) and Difluoromethylselenation (-SeCF 2H) of Unactivated C(sp 3)-H Bonds in N-Fluoroamides. Org Lett 2021; 23:4721-4725. [PMID: 34080880 DOI: 10.1021/acs.orglett.1c01443] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The iron-catalyzed δ-C(sp3)-H bond difluoromethylthiolation and difluoromethylselenation of aliphatic amides with high site selectivity are reported. Essential to the success is the employment of an amide radical formed in situ to activate the inert C(sp3)-H bond and the utilization of the easily handled PhSO2SCF2H and PhSO2SeCF2H as coupling reagents under mild conditions. This scalable protocol exhibits a broad substrate scope bearing versatile functional groups. Mechanistic studies indicate that the reaction proceeds through -SCF2H and -SeCF2H radical transfer.
Collapse
Affiliation(s)
- Hongwei Zhang
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Fei Yu
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Chuang Li
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Peiyuan Tian
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yulu Zhou
- Department of Chemistry, College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
45
|
Zhou H, Li ZL, Gu QS, Liu XY. Ligand-Enabled Copper(I)-Catalyzed Asymmetric Radical C(sp 3)–C Cross-Coupling Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huan Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
46
|
Hu QP, Cheng J, Wang Y, Shi J, Wang BQ, Hu P, Zhao KQ, Pan F. Remote Regioselective Radical C-H Functionalization of Unactivated C-H Bonds in Amides: The Synthesis of gem-Difluoroalkenes. Org Lett 2021; 23:4457-4462. [PMID: 33983034 DOI: 10.1021/acs.orglett.1c01385] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The site-selective functionalization of unactivated aliphatic amines is an attractive and challenging synthetic approach. We herein report a general strategy for the remote site-selective functionalization of unactivated C(sp3)-H bonds in amides by photogenerated amidyl radicals to form gem-difluoroalkenes with trifluoromethyl-substituted alkenes. The site selectivity is controlled by a 1,5-hydrogen atom transfer (HAT) process of the amide. This photocatalyzed transformation shows both chemo- and site-selectivity, facilitating the formation of a secondary, tertiary, or quaternary carbon center.
Collapse
Affiliation(s)
- Qu-Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jing Cheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ying Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jie Shi
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Bi-Qin Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
47
|
Guo P, Han JF, Yuan GC, Chen L, Liao JB, Ye KY. Cobalt-Catalyzed Divergent Aminofluorination and Diamination of Styrenes with N-Fluorosulfonamides. Org Lett 2021; 23:4067-4071. [PMID: 33970648 DOI: 10.1021/acs.orglett.1c01308] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A cobalt-catalyzed aminofluorination reaction of styrenes with N-fluorosulfonamides serving as both the amination and fluorination agents has been developed. The switch of selectivity in this catalytic reaction from aminofluorination to diamination could be easily achieved by the addition of 1.0 equiv of PPh3. Both transformations tolerated a wide array of substrates under mild reaction conditions.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Jun-Fa Han
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Guo-Cai Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Lin Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Jia-Bin Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
48
|
Deng Z, Zhao Z, He G, Chen G. Photoredox-Mediated Mono- and Difluorination of Remote Unactivated Methylene C(sp 3)-H Bonds of N-Alkyl Sulfonamides. Org Lett 2021; 23:3631-3635. [PMID: 33881874 DOI: 10.1021/acs.orglett.1c01020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A photoredox-mediated δ-C(sp3)-H fluorination of sulfonyl-protected primary alkylamines with Selectfluor is developed. The reaction can proceed in excellent monofluorination selectivity for amine substrates without α substituent. For α-substituted substrates, a slightly modified reaction conditions with two rounds of operation gives the δ,δ-difluorination products in good yield. Mechanistic studies suggest SET oxidation of sulfonamide group directly generates the key sulfonamide N radical intermediate, which triggers a 1,5-HAT process to form the δ alkyl radical.
Collapse
Affiliation(s)
- Zhiqiang Deng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenxiang Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
49
|
Zhou L, Wei S, Lei Z, Zhu G, Zhang Z. Transition-Metal-Free α Csp 3 -H Cyanation of Sulfonamides. Chemistry 2021; 27:7103-7107. [PMID: 33769613 DOI: 10.1002/chem.202100902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 12/18/2022]
Abstract
This report describes the site-selective α-functionalization of sulfonylamide derivatives through the in-situ generation of imine intermediates. The N-F sulfonylamides, which could facilitate the elimination to generate imines, are coupled with TBACN to efficiently and mildly afford α-amino cyanides. Comparing with Strecker reaction, this transformation offers a complementary strategy to efficiently construct α-amino cyanides from direct α C-H functionalization of sulfonylamindes. The reaction is also characterized by broad substrate scope and flash chromatography column free workup. More importantly, the new two-electron pathway to generate imines through manipulation of the leaving group allows us to achieve excellent α site-selectivity.
Collapse
Affiliation(s)
- Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Siqi Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Ziran Lei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| |
Collapse
|
50
|
Liu HC, Li Y, Gong XP, Niu ZJ, Wang YZ, Li M, Shi WY, Zhang Z, Liang YM. Cu-Catalyzed Direct C-H Alkylation of Polyfluoroarenes via Remote C(sp 3)-H Functionalization in Carboxamides. Org Lett 2021; 23:2693-2698. [PMID: 33739843 DOI: 10.1021/acs.orglett.1c00586] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel dehydrogenative coupling reaction of N-fluorocarboxamides with polyfluoroarenes forming C(sp2)-C(sp3) bonds enabled by copper catalysis has been accomplished. N-Fluorocarboxamides are postulated to undergo copper-mediated dehydrogenative cross-coupling reaction with electron-deficient polyfluoroarenes via a radical pathway. Benzylic C-H bonds and aliphatic C-H bonds in N-fluorocarboxamides could proceed smoothly and demonstrated excellent regioselectivity. The detailed mechanism presented is supported by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Hong-Chao Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiao-Ping Gong
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhi-Jie Niu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yu-Zhao Wang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|