1
|
Si XJ, Wang TC, Loh TP, Lu MZ. Recent advances in catalytic asymmetric alkenyl C(sp 2)-H bond functionalizations. Chem Sci 2025; 16:5836-5848. [PMID: 40103714 PMCID: PMC11912223 DOI: 10.1039/d5sc00623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Alkenes and their derivatives are widespread in numerous bioactive natural products and pharmaceutically relevant molecules. They are also synthetically versatile building blocks that have found broad applications in a plethora of organic transformations. The asymmetric alkenyl C(sp2)-H functionalization of readily available olefinic feedstocks allows the practical and straightforward synthesis of structurally diverse chiral compounds. As such, an ever-increasing number of robust and versatile strategies have been established to selectively functionalize the olefinic C(sp2)-H bonds in recent years. The current review provides a concise overview of these impressive achievements in the realm of asymmetric alkenyl C-H functionalization reactions, with a particular emphasis on substrate scopes, limitations, mechanistic studies, as well as their applications in the precise synthesis of diversely functionalized chiral molecules. Challenges and future opportunities regarding this area of research are also discussed. Through this review, we aim to inspire continuous efforts toward further development of more practical and broadly applicable strategies to advance this burgeoning field.
Collapse
Affiliation(s)
- Xiao-Ju Si
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology Zhengzhou 450001 China
| | - Tian-Ci Wang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology Zhengzhou 450001 China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology Zhengzhou 450001 China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University Singapore 637371 Singapore
| | - Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology Zhengzhou 450001 China
- School of Chemistry and Chemical Engineering, Huaiyin Normal University Huaian 223300 China
| |
Collapse
|
2
|
Noor H, Zhang S, Jia X, Gao P, Yuan Y. Silver-Catalyzed Markovnikov Addition Hydrofunctionalization of Terminal Alkynes: Synthesis of N-Enoxyimides and Oximes. Org Lett 2024; 26:11150-11155. [PMID: 39682016 DOI: 10.1021/acs.orglett.4c04180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
N-Enoxyimides are versatile and valuable synthetic synthons in modern organic synthesis and catalysis. Herein, a silver-catalyzed hydrooxyimidation of terminal alkynes that enables the synthesis of N-enoxyimides, has been demonstrated. The protocol features are simple, step- and atom-efficient, scalable, and exhibit a broad scope of functional group tolerance under mild conditions. A novel hydrolysis of the N-enoxyimides unexpectedly provides the corresponding aromatic oximes in 96% yield, showing the potential application of this strategy.
Collapse
Affiliation(s)
- Hafiz Noor
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Faculty of Education, Department of Chemistry, University of Al Fashir, Al Fashir 61111, Sudan
| | - Shuwei Zhang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiaodong Jia
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Pan Gao
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yu Yuan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
3
|
Liu CX, Yin SY, Zhao F, Yang H, Feng Z, Gu Q, You SL. Rhodium-Catalyzed Asymmetric C-H Functionalization Reactions. Chem Rev 2023; 123:10079-10134. [PMID: 37527349 DOI: 10.1021/acs.chemrev.3c00149] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
This review summarizes the advancements in rhodium-catalyzed asymmetric C-H functionalization reactions during the last two decades. Parallel to the rapidly developed palladium catalysis, rhodium catalysis has attracted extensive attention because of its unique reactivity and selectivity in asymmetric C-H functionalization reactions. In recent years, Rh-catalyzed asymmetric C-H functionalization reactions have been significantly developed in many respects, including catalyst design, reaction development, mechanistic investigation, and application in the synthesis of complex functional molecules. This review presents an explicit outline of catalysts and ligands, mechanism, the scope of coupling reagents, and applications.
Collapse
Affiliation(s)
- Chen-Xu Liu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Si-Yong Yin
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Fangnuo Zhao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Hui Yang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Zuolijun Feng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
4
|
Kong L, Zou Y, Li XX, Zhang XP, Li X. Rhodium-catalyzed enantioselective C-H alkynylation of sulfoxides in diverse patterns: desymmetrization, kinetic resolution, and parallel kinetic resolution. Chem Sci 2023; 14:317-322. [PMID: 36687346 PMCID: PMC9811495 DOI: 10.1039/d2sc05310a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022] Open
Abstract
Rhodium-catalyzed enantioselective C-H alkynylation of achiral and racemic sulfoxides is disclosed with alkynyl bromide as the alkynylating reagent. A wide range of chiral sulfoxides have been constructed in good yield and excellent enantioselectivity (up to 99% ee, s-factor up to > 500) via desymmetrization, kinetic resolution, and parallel kinetic resolution under mild reaction conditions. The high enantioselectivity was rendered by the chiral cyclopentadienyl rhodium(iii) catalyst paired with a chiral carboxamide additive. The interactions between the chiral catalyst, the sulfoxide, and the chiral carboxylic amide during the C-H bond cleavage offer the asymmetric induction, which is validated by DFT calculations. The chiral carboxamide functions as a base to promote C-H activation and offers an additional chiral environment during the C-H cleavage.
Collapse
Affiliation(s)
- Lingheng Kong
- School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityXi'an 710062China
| | - Yun Zou
- School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityXi'an 710062China
| | - Xiao-Xi Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong UniversityQingdao 266237China
| | - Xue-Peng Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityXi'an 710062China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal UniversityXi'an 710062China,Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong UniversityQingdao 266237China
| |
Collapse
|
5
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Zeng Z, Gao H, Zhou Z, Yi W. Intermolecular Redox-Neutral Carboamination of C–C Multiple Bonds Initiated by Transition-Metal-Catalyzed C–H Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Zhongyi Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, People’s Republic of China
| |
Collapse
|
7
|
Kharitonov VB, Muratov DV, Loginov DA. Cyclopentadienyl complexes of group 9 metals in the total synthesis of natural products. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Hu P, Liu B, Wang F, Mi R, Li XX, Li X. A Stereodivergent–Convergent Chiral Induction Mode in Atroposelective Access to Biaryls via Rhodium-Catalyzed C–H Bond Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Bingxian Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Ruijie Mi
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xiao-Xi Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| |
Collapse
|
9
|
Chen Y, Zhang J, Yang Y, Xiang K, Li H, Sun D, Chen L. Kynurenine‐3‐monooxygenase (KMO): From its biological functions to therapeutic effect in diseases progression. J Cell Physiol 2022; 237:4339-4355. [DOI: 10.1002/jcp.30876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yanmei Chen
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Jiahui Zhang
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Yueying Yang
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Ke Xiang
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Hua Li
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
- College of Pharmacy Fujian University of Traditional Chinese Medicine Fuzhou China
| | - Dejuan Sun
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Lixia Chen
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| |
Collapse
|
10
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
11
|
Wu M, Zhang H, Wang T, Lin S, Guo Z, Gao H, Zhou Z, Yi W. Rh(III)-Catalyzed chemo-, regio- and stereoselective carboamination of sulfonyl allenes with N-phenoxy amides or N-enoxy imides. Chem Commun (Camb) 2022; 58:9286-9289. [PMID: 35904085 DOI: 10.1039/d2cc02982k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Rh(III)-catalyzed chemo-, regio- and stereoselective carboamination of sulfonyl allenes has been realized by virtue of either N-phenoxy amides or N-enoxy imides simultaneously acting as the C- and N-sources, via redox-neutral tandem C-H activation/allene insertion/oxidative addition/C-N bond formation for the direct construction of allylamine derivatives equipped with an α-quaternary carbon center. This protocol features high atom-economy with good substrate compatibility and exhibits profound synthetic potential for late-stage C-H modification of complex molecules.
Collapse
Affiliation(s)
- Min Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Haiman Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Ting Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Shuang Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Ziyang Guo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, P. R. China.
| |
Collapse
|
12
|
Wodrich MD, Chang M, Gallarati S, Woźniak Ł, Cramer N, Corminboeuf C. Mapping Catalyst-Solvent Interplay in Competing Carboamination/Cyclopropanation Reactions. Chemistry 2022; 28:e202200399. [PMID: 35522013 PMCID: PMC9401068 DOI: 10.1002/chem.202200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/06/2022]
Abstract
Group 9 metals, in particular RhIII complexes with cyclopentadienyl ligands, are competent C-H activation catalysts. Recently, a Cp*RhIII -catalyzed reaction of alkenes with N-enoxyphthalimides showed divergent outcome based on the solvent, with carboamination favored in methanol and cyclopropanation in 2,2,2-trifluoroethanol (TFE). Here, we create selectivity and activity maps capable of unravelling the catalyst-solvent interplay on the outcome of these competing reactions by analyzing 42 cyclopentadienyl metal catalysts, CpX MIII (M=Co, Rh, Ir). These maps not only can be used to rationalize previously reported experimental results, but also capably predict the behavior of untested catalyst/solvent combinations as well as aid in identifying experimental protocols that simultaneously optimize both catalytic activity and selectivity (solutions in the Pareto front). In this regard, we demonstrate how and why the experimentally employed Cp*RhIII catalyst represents an ideal choice to invoke a solvent-induced change in reactivity. Additionally, the maps reveal the degree to which even perceived minor changes in the solvent (e. g., replacing methanol with ethanol) influence the ratio of carboamination and cyclopropanation products. Overall, the selectivity and activity maps presented here provide a generalizable tool to create global pictures of anticipated reaction outcome that can be used to develop new experimental protocols spanning metal, ligand, and solvent space.
Collapse
Affiliation(s)
- Matthew D. Wodrich
- Laboratory for Computational Molecular DesignInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
- National Centre for Competence in Research – Catalysis (NCCR-Catalysis)Ecole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Miyeon Chang
- Laboratory for Computational Molecular DesignInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Simone Gallarati
- Laboratory for Computational Molecular DesignInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Łukasz Woźniak
- National Centre for Competence in Research – Catalysis (NCCR-Catalysis)Ecole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
- National Centre for Competence in Research – Catalysis (NCCR-Catalysis)Ecole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Clemence Corminboeuf
- Laboratory for Computational Molecular DesignInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
- National Centre for Competence in Research – Catalysis (NCCR-Catalysis)Ecole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
- National Centre for Computational Design andDiscovery of Novel Materials (MARVEL)Ecole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
13
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
14
|
Lahtigui O, Forster D, Duchemin C, Cramer N. Enantioselective Access to 3-Azabicyclo[3.1.0]hexanes by Cp xRh III Catalyzed C–H Activation and Cp*Ir III Transfer Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ouidad Lahtigui
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Dan Forster
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Coralie Duchemin
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
15
|
Thorat SS, Rama Krishna G, Kontham R. Stereoselective Total Synthesis of (±)-Pleurospiroketals A and B. J Org Chem 2021; 86:13572-13582. [PMID: 34547199 DOI: 10.1021/acs.joc.1c01634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A full account of our efforts toward the stereoselective total synthesis of sesquiterpenoid-derived natural products (±)-pleurospiroketals A and B is described. Commercially available 3-methyl-2-cyclohexenone and 2,2-dimethyloxirane were used as key building blocks, and the substrate-controlled stereoselection was exploited to access the entire stereochemistry of these natural products. Initially, a planned synthetic route involving a [6,5]-bicyclic lactone intermediate was found to be insurmountable, and the later strategy comprising OsO4-NMO-mediated dihydroxylation of 3-methyl-2-cyclohexenone, followed by Luche reduction, Eschenmoser methylenation, and Brønsted acid-induced spiroketalization steps, was ultimately identified as the reliable strategy.
Collapse
Affiliation(s)
- Sagar S Thorat
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gamidi Rama Krishna
- Centre for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Ravindar Kontham
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
16
|
Mao R, Zhao Y, Zhu X, Wang F, Deng WQ, Li X. Rhodium-Catalyzed and Chiral Zinc Carboxylate-Assisted Allenylation of Benzamides via Kinetic Resolution. Org Lett 2021; 23:7038-7043. [PMID: 34477394 DOI: 10.1021/acs.orglett.1c02398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Enantioenriched allenes are important building blocks. While they have been accessed by other coupling methodologies, enantioenriched allenes have been rarely obtained via C-H activation. In this work, kinetic resolution of tertiary propargyl alcohols as an allenylating reagent has been realized via rhodium(III)-catalyzed C-H allenylation of benzamides. The reaction proceeded efficiently under mild conditions, and both the allenylated products and the propargyl alcohols were obtained in high enantioselectivities with an s-factor of up to 139. The resolution results from bias of the two propargylic substituents and is assisted by a chiral zinc carboxylate additive.
Collapse
Affiliation(s)
- Ruxia Mao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Yanliang Zhao
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 266237 (China)
| | - Xiaohan Zhu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China
| | - Wei-Qiao Deng
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 266237 (China)
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an 710062, China.,Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 266237 (China)
| |
Collapse
|
17
|
Wang F, Jing J, Zhao Y, Zhu X, Zhang XP, Zhao L, Hu P, Deng WQ, Li X. Rhodium-Catalyzed C-H Activation-Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angew Chem Int Ed Engl 2021; 60:16628-16633. [PMID: 34008279 DOI: 10.1002/anie.202105093] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 12/20/2022]
Abstract
Reported herein is asymmetric [3+2] annulation of arylnitrones with different classes of alkynes catalyzed by chiral rhodium(III) complexes, with the nitrone acting as an electrophilic directing group. Three classes of chiral indenes/indenones have been effectively constructed, depending on the nature of the substrates. The coupling system features mild reaction conditions, excellent enantioselectivity, and high atom-economy. In particular, the coupling of N-benzylnitrones and different classes of sterically hindered alkynes afforded C-C or C-N atropochiral pentatomic biaryls with a C-centered point-chirality in excellent enantio- and diastereoselectivity (45 examples, average 95.6 % ee). These chiral center and axis are disposed in a distal fashion and they are constructed via two distinct migratory insertions that are stereo-determining and are under catalyst control.
Collapse
Affiliation(s)
- Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Jierui Jing
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Yanliang Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Xiaohan Zhu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Xue-Peng Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Liujie Zhao
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Wei-Qiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China.,Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
18
|
Wang J, Chen H, Kong L, Wang F, Lan Y, Li X. Enantioselective and Diastereoselective C–H Alkylation of Benzamides: Synergized Axial and Central Chirality via a Single Stereodetermining Step. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02450] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jinlei Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Haohua Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Lingheng Kong
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi’an 710062, China
| |
Collapse
|
19
|
Szczepkowska AM, Janeta M, Siczek M, Tylus W, Trzeciak AM, Bury W. Immobilization of Rh(I) precursor in a porphyrin metal-organic framework - turning on the catalytic activity. Dalton Trans 2021; 50:9051-9058. [PMID: 34008670 DOI: 10.1039/d1dt00518a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two model porphyrin metal-organic frameworks were used for the incorporation of Rh(i) species by a post-synthetic metallation under mild conditions. As a result, new rhodium MOFs (Rh/MOFs), Rh/PCN-222 and Rh/NU-1102, were synthesized and structurally characterized. To illustrate the potential of this catalytic platform, we use Rh/MOFs as phosphine-free heterogeneous catalysts in the hydrogenation of unsaturated hydrocarbons under mild reaction conditions (30 °C and 1 atm H2). We found that for our Rh/MOFs an activation step is required during the first run of the catalytic process. The presence of Rh-CO moieties allowed us to monitor the activation pathway of the catalyst under a H2 atmosphere, by in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). After activation, the catalyst remains highly active during the subsequent catalytic cycles. This simple post-synthetic modification approach presents new possibilities for the utilization of Rh-based catalytic systems with robust porphyrin-based MOFs as supports.
Collapse
Affiliation(s)
- Anna M Szczepkowska
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Mateusz Janeta
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Włodzimierz Tylus
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna M Trzeciak
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Wojciech Bury
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
20
|
Wang F, Jing J, Zhao Y, Zhu X, Zhang X, Zhao L, Hu P, Deng W, Li X. Rhodium‐Catalyzed C−H Activation‐Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fen Wang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Jierui Jing
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Yanliang Zhao
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| | - Xiaohan Zhu
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xue‐Peng Zhang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Liujie Zhao
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Panjie Hu
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Wei‐Qiao Deng
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| |
Collapse
|
21
|
Jiang L, Wang Z, Armstrong M, Suero MG. β-Diazocarbonyl Compounds: Synthesis and their Rh(II)-Catalyzed 1,3 C-H Insertions. Angew Chem Int Ed Engl 2021; 60:6177-6184. [PMID: 33275325 DOI: 10.1002/anie.202015077] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 12/28/2022]
Abstract
Herein, we describe the first electrophilic diazomethylation of ketone silyl enol ethers with diazomethyl-substituted hypervalent iodine reagents that gives access to unusual β-diazocarbonyl compounds. The potential of this unexplored class of diazo compounds for the development of new reactions was demonstrated by the discovery of a rare Rh-catalyzed intramolecular 1,3 C-H carbene insertion that led to complex cyclopropanes with excellent stereocontrol.
Collapse
Affiliation(s)
- Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Zhaofeng Wang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Melanie Armstrong
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| |
Collapse
|
22
|
Wu L, Xu H, Gao H, Li L, Chen W, Zhou Z, Yi W. Chiral Allylic Amine Synthesis Enabled by the Enantioselective CpXRh(III)-Catalyzed Carboaminations of 1,3-Dienes. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04777] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liexin Wu
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Huiying Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Liping Li
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Weijie Chen
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Key Laboratory of Molecular Target and Clinical Pharmacology & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
23
|
Jiang L, Wang Z, Armstrong M, Suero MG. β‐Diazocarbonyl Compounds: Synthesis and their Rh(II)‐Catalyzed 1,3 C−H Insertions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Zhaofeng Wang
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Melanie Armstrong
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Marcos G. Suero
- Institute of Chemical Research of Catalonia (ICIQ) Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| |
Collapse
|
24
|
Liu B, Yang L, Li P, Wang F, Li X. Recent advances in transition metal-catalyzed olefinic C–H functionalization. Org Chem Front 2021. [DOI: 10.1039/d0qo01159b] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent advances during 2015–2020 in the field of metal-catalyzed olefinic C–H functionalization are organized according to the metal center of the catalyst, with an emphasis on the similarities and differences among different catalysts.
Collapse
Affiliation(s)
- Bingxian Liu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Lingyun Yang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Pengfei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| | - Fen Wang
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University (SNNU)
- Xi'an 710062
- China
| | - Xingwei Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang 453007
| |
Collapse
|
25
|
Mas‐Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Chiral Cyclopentadienyl Ligands: Design, Syntheses, and Applications in Asymmetric Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008166] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Josep Mas‐Roselló
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Ana G. Herraiz
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Benoît Audic
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Aragorn Laverny
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
26
|
Mas‐Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Chiral Cyclopentadienyl Ligands: Design, Syntheses, and Applications in Asymmetric Catalysis. Angew Chem Int Ed Engl 2020; 60:13198-13224. [DOI: 10.1002/anie.202008166] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Josep Mas‐Roselló
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Ana G. Herraiz
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Benoît Audic
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Aragorn Laverny
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
27
|
Liang H, Vasamsetty L, Li T, Jiang J, Pang X, Wang J. A New Class of C 2 -Symmetric Chiral Cyclopentadienyl Ligand Derived from Ferrocene Scaffold: Design, Synthesis and Application. Chemistry 2020; 26:14546-14550. [PMID: 32470226 DOI: 10.1002/chem.202001814] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/13/2020] [Indexed: 12/12/2022]
Abstract
A new class of C2 -symmetric, chiral cyclopentadienyl ligand based on planar chiral ferrocene backbone was developed. A series of its corresponding rhodium(I), iridium(I), and ruthenium(II) complexes were prepared as well. In addition, the rhodium(I) complexes were evaluated in the asymmetric catalytic intramolecular amidoarylation of olefin-tethered benzamides via C-H activation.
Collapse
Affiliation(s)
- Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of, Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Laxmaiah Vasamsetty
- Key Laboratory of Bioinorganic and Synthetic Chemistry of, Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Teng Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of, Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of, Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xingying Pang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of, Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of, Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
28
|
Li G, Yan X, Jiang J, Liang H, Zhou C, Wang J. Chiral Bicyclo[2.2.2]octane-Fused CpRh Complexes: Synthesis and Potential Use in Asymmetric C-H Activation. Angew Chem Int Ed Engl 2020; 59:22436-22440. [PMID: 32840946 DOI: 10.1002/anie.202010489] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 12/19/2022]
Abstract
A new class of chiral cyclopentadienyl rhodium(I) complexes (CpRhI ) bearing C2 -symmetric chiral bridged-ring-fused Cp ligands was prepared. The complexes were successfully applied to the asymmetric C-H activation reaction of N-methoxybenzamides with quinones, affording a series of chiral hydrophenanthridinones in up to 82 % yield with up to 99 % ee. Interestingly, structure analysis reveals that the side wall of the optimal chiral CpRhI catalyst is vertically more extended, horizontally less extended, and closer to the metal center in comparison with the classic binaphthyl and spirobiindanyl CpRhI complexes, and may thus account for its superior catalytic performance.
Collapse
Affiliation(s)
- Guozhu Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xiaoqiang Yan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Chao Zhou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
29
|
Li G, Yan X, Jiang J, Liang H, Zhou C, Wang J. Chiral Bicyclo[2.2.2]octane‐Fused CpRh Complexes: Synthesis and Potential Use in Asymmetric C−H Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guozhu Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Xiaoqiang Yan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Chao Zhou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
30
|
Sun J, Yuan W, Tian R, Wang P, Zhang X, Li X. Rhodium(III)‐Catalyzed Asymmetric [4+1] and [5+1] Annulation of Arenes and 1,3‐Enynes: A Distinct Mechanism of Allyl Formation and Allyl Functionalization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jiaqiong Sun
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Weiliang Yuan
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Rong Tian
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Peiyuan Wang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xue‐Peng Zhang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| |
Collapse
|
31
|
Sun J, Yuan W, Tian R, Wang P, Zhang X, Li X. Rhodium(III)‐Catalyzed Asymmetric [4+1] and [5+1] Annulation of Arenes and 1,3‐Enynes: A Distinct Mechanism of Allyl Formation and Allyl Functionalization. Angew Chem Int Ed Engl 2020; 59:22706-22713. [DOI: 10.1002/anie.202010832] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Jiaqiong Sun
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Weiliang Yuan
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Rong Tian
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Peiyuan Wang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xue‐Peng Zhang
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering Shaanxi Normal University (SNNU) Xi'an 710062 China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences Shandong University Qingdao 266237 China
| |
Collapse
|
32
|
Shaaban S, Davies C, Waldmann H. Applications of Chiral Cyclopentadienyl (Cp
x
) Metal Complexes in Asymmetric Catalysis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000752] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saad Shaaban
- Max‐Planck‐Institute of Molecular Physiology Department of Chemical Biology Otto‐Hahn‐Straße 11 44227 Dortmund Germany
| | - Caitlin Davies
- Max‐Planck‐Institute of Molecular Physiology Department of Chemical Biology Otto‐Hahn‐Straße 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemical Biology Otto‐Hahn‐Straße 4a 44227 Dortmund Germany
| | - Herbert Waldmann
- Max‐Planck‐Institute of Molecular Physiology Department of Chemical Biology Otto‐Hahn‐Straße 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemical Biology Otto‐Hahn‐Straße 4a 44227 Dortmund Germany
| |
Collapse
|
33
|
Duchemin C, Cramer N. Enantioselective Cp x Rh III -Catalyzed Carboaminations of Acrylates. Angew Chem Int Ed Engl 2020; 59:14129-14133. [PMID: 32410313 DOI: 10.1002/anie.202006149] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Indexed: 12/18/2022]
Abstract
Enantioselective carboaminations of olefins constitute an attractive strategy for a rapid increase in molecular complexity from readily available starting materials. Reported here is an intermolecular asymmetric carboamination of acrylates using rhodium(III)-catalyzed alkenyl C-H activations of N-enoxysuccinimides to generate the nitrogen and carbon portion for the transfer. A rhodium complex equipped with a tailored bulky trisubstituted chiral Cpx ligand ensures carboamination chemoselectivity as well high levels of enantioinduction. The transformation operates under mild reaction conditions at ambient temperatures and provides access to a variety of α-amino esters in good yields and excellent enantiomeric ratios of >99.5:0.5.
Collapse
Affiliation(s)
- Coralie Duchemin
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
34
|
Wang SG, Cramer N. Asymmetric CpxRh(III)-Catalyzed Acrylic Acid C–H Functionalization with Allenes Provides Chiral γ-Lactones. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02430] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shou-Guo Wang
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Duchemin C, Cramer N. Enantioselective Cp
x
Rh
III
‐Catalyzed Carboaminations of Acrylates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Coralie Duchemin
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
36
|
Yoshino T, Satake S, Matsunaga S. Diverse Approaches for Enantioselective C-H Functionalization Reactions Using Group 9 Cp x M III Catalysts. Chemistry 2020; 26:7346-7357. [PMID: 31994236 DOI: 10.1002/chem.201905417] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Indexed: 12/27/2022]
Abstract
Transition-metal-catalyzed C-H functionalization reactions with Cp*MIII catalysts (M=Co, Rh, Ir) have found a wide variety of applications in organic synthesis. Albeit the intrinsic difficulties in achieving catalytic stereocontrol using these catalysts due to their lack of additional coordination sites for external chiral ligands and the conformational flexibility of the Cp ligand, catalytic enantioselective C-H functionalization reactions using the Group 9 metal triad with Cp-type ligands have been intensively studied since 2012. In this minireview, the progress in these reactions according to the type of the chiral catalyst used are summarized and discussed. The development of chiral Cpx ligands the metal complexes thereof, artificial metalloenzymes, chiral carboxylate-assisted enantioselective C-H activations, enantioselective alkylations assisted by chiral carboxylic acids or chiral sulfonates, and chiral transient directing groups are discussed.
Collapse
Affiliation(s)
- Tatsuhiko Yoshino
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shun Satake
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, 060-0812, Japan
| |
Collapse
|
37
|
Yan X, Zhao P, Liang H, Xie H, Jiang J, Gou S, Wang J. Rhodium(III)-Catalyzed Asymmetric C–H Activation of N-Methoxybenzamide with Quinone and Its Application in the Asymmetric Synthesis of a Dihydrolycoricidine Analogue. Org Lett 2020; 22:3219-3223. [DOI: 10.1021/acs.orglett.0c01002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoqiang Yan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Peng Zhao
- School of Chemistry and Chemical Engineering, State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Hao Liang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Hui Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Shaohua Gou
- School of Chemistry and Chemical Engineering, State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
38
|
Yasui M. Stereodivergent Cyclopropanation of Alkenes with <i>N</i>-Enoxyphthalimides via C-H Activation. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Yamada T, Shibata Y, Tanaka K. Formal Lossen Rearrangement/Alkenylation or Annulation Cascade of Heterole Carboxamides with Alkynes Catalyzed by CpRh III Complexes with Pendant Amides. Chemistry 2019; 25:16022-16031. [PMID: 31553093 DOI: 10.1002/chem.201904156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/24/2019] [Indexed: 01/24/2023]
Abstract
It has been established that a cyclopentadienyl (Cp) RhIII complex with two aryl groups and a pendant amide moiety catalyzes the formal Lossen rearrangement/alkenylation cascade of N-pivaloyl heterole carboxamides with internal alkynes, leading to alkenylheteroles. Interestingly, the use of sterically demanding internal alkynes afforded not the alkenylation but the [3+2] annulation products ([5,5]-fused heteroles). In these reactions, the pendant amide moiety of the CpRhIII complex may accelerate the formal Lossen rearrangement. The use of five-membered heteroles may deter reductive elimination to form strained [5,5]-fused heteroles; instead, protonation proceeds to give the alkenylation products. Bulky alkyne substituents accelerate the reductive elimination to allow the formation of the [5,5]-fused heteroles.
Collapse
Affiliation(s)
- Takayuki Yamada
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Yu Shibata
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
40
|
Wang S, Liu Y, Cramer N. Asymmetric Alkenyl C−H Functionalization by Cp
x
Rh
III
forms 2
H
‐Pyrrol‐2‐ones through [4+1]‐Annulation of Acryl Amides and Allenes. Angew Chem Int Ed Engl 2019; 58:18136-18140. [DOI: 10.1002/anie.201909971] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/20/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Shou‐Guo Wang
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 CH-1015 Lausanne Switzerland
| | - Yang Liu
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 CH-1015 Lausanne Switzerland
- Dipartimento di ChimicaUniversità di Bologna via Selmi 2 40126 Bologna Italy
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 CH-1015 Lausanne Switzerland
| |
Collapse
|
41
|
Mi R, Zheng G, Qi Z, Li X. Rhodium‐Catalyzed Enantioselective Oxidative [3+2] Annulation of Arenes and Azabicyclic Olefins through Twofold C−H Activation. Angew Chem Int Ed Engl 2019; 58:17666-17670. [DOI: 10.1002/anie.201911086] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Ruijie Mi
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE andSchool of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
| | - Guangfan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE andSchool of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
| | - Zisong Qi
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE andSchool of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xingwei Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE andSchool of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
| |
Collapse
|
42
|
Moku B, Fang WY, Leng J, Li L, Zha GF, Rakesh KP, Qin HL. Rh-Catalyzed Highly Enantioselective Synthesis of Aliphatic Sulfonyl Fluorides. iScience 2019; 21:695-705. [PMID: 31733515 PMCID: PMC6889689 DOI: 10.1016/j.isci.2019.10.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 11/25/2022] Open
Abstract
Rh-catalyzed, highly enantioselective (up to 99.8% ee) synthesis of aliphatic sulfonyl fluorides was accomplished. This protocol provides a portal to a class of novel 2-aryl substituted chiral sulfonyl fluorides, which are otherwise extremely difficult to access. This asymmetric synthesis has the feature of mild conditions, excellent functional group compatibility, and wide substrate scope (51 examples) generating a wide array of structurally unique chiral β-arylated sulfonyl fluorides for sulfur(VI) fluoride exchange (SuFEx) click reaction and drug discovery.
Collapse
Affiliation(s)
- Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Linxian Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Hong Kong, China
| | - Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China; Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Hong Kong, China
| | - K P Rakesh
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China.
| |
Collapse
|
43
|
Wang S, Liu Y, Cramer N. Asymmetric Alkenyl C−H Functionalization by Cp
x
Rh
III
forms 2
H
‐Pyrrol‐2‐ones through [4+1]‐Annulation of Acryl Amides and Allenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909971] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shou‐Guo Wang
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 CH-1015 Lausanne Switzerland
| | - Yang Liu
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 CH-1015 Lausanne Switzerland
- Dipartimento di ChimicaUniversità di Bologna via Selmi 2 40126 Bologna Italy
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and SynthesisEPFL SB ISIC LCSA, BCH 4305 CH-1015 Lausanne Switzerland
| |
Collapse
|
44
|
Mi R, Zheng G, Qi Z, Li X. Rhodium‐Catalyzed Enantioselective Oxidative [3+2] Annulation of Arenes and Azabicyclic Olefins through Twofold C−H Activation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911086] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruijie Mi
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE andSchool of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
| | - Guangfan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE andSchool of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
| | - Zisong Qi
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE andSchool of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
| | - Xingwei Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE andSchool of Chemistry and Chemical EngineeringShaanxi Normal University (SNNU) Xi'an 710062 China
| |
Collapse
|
45
|
Phipps EJT, Piou T, Rovis T. Rh(III)-Catalyzed Cyclopropanation of Unactivated Olefins Initiated by C-H Activation. Synlett 2019; 30:1787-1790. [PMID: 32801480 PMCID: PMC7428168 DOI: 10.1055/s-0039-1690130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have developed a Rh(III)-catalyzed cyclopropanation of unactivated olefins initiated by an alkenyl C-H activation. A variety of 1,1-disubstituted olefins undergo efficient cyclopropanation with a slight excess of alkene stoichiometry. A series of mechanistic interrogations implicate a metal-carbene as an intermediate.
Collapse
Affiliation(s)
- Erik J T Phipps
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Tiffany Piou
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
46
|
Duchemin C, Smits G, Cramer N. RhI, IrIII ,and CoIII Complexes with Atropchiral Biaryl Cyclopentadienyl Ligands: Syntheses, Structures, and Catalytic Activities. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00365] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Coralie Duchemin
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), SB-ISIC, BCH4305, 1015 Lausanne, Switzerland
| | - Gints Smits
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), SB-ISIC, BCH4305, 1015 Lausanne, Switzerland
| |
Collapse
|
47
|
Phipps EJT, Rovis T. Rh(III)-Catalyzed C-H Activation-Initiated Directed Cyclopropanation of Allylic Alcohols. J Am Chem Soc 2019; 141:6807-6811. [PMID: 30998324 DOI: 10.1021/jacs.9b02156] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We have developed a Rh(III)-catalyzed diastereoselective [2+1] annulation onto allylic alcohols initiated by alkenyl C-H activation of N-enoxyphthalimides to furnish substituted cyclopropyl-ketones. Notably, the traceless oxyphthalimide handle serves three functions: directing C-H activation, oxidation of Rh(III), and, collectively with the allylic alcohol, in directing cyclopropanation to control diastereoselectivity. Allylic alcohols are shown to be highly reactive olefin coupling partners leading to a directed diastereoselective cyclopropanation reaction, providing products not accessible by other routes.
Collapse
Affiliation(s)
- Erik J T Phipps
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Tomislav Rovis
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| |
Collapse
|