1
|
Gholizadeh A, Amjad-Iranagh S, Halladj R. Assessing the Interaction between Dodecylphosphocholine and Dodecylmaltoside Mixed Micelles as Drug Carriers with Lipid Membrane: A Coarse-Grained Molecular Dynamics Simulation. ACS OMEGA 2024; 9:40433-40445. [PMID: 39372004 PMCID: PMC11447843 DOI: 10.1021/acsomega.4c02551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024]
Abstract
Integrating drugs into cellular membranes efficiently is a significant challenge in drug delivery systems. This study aimed to overcome these barriers by utilizing mixed micelles to enhance drug incorporation into cell membranes. We employed coarse-grained molecular dynamics (MD) simulations to investigate the stability and efficacy of micelles composed of dodecylphosphocholine (DPC), a zwitterionic surfactant, and dodecylmaltoside (DDM), a nonionic surfactant, at various mixing ratios. Additionally, we examined the incorporation of a mutated form of Indolicidin (IND) (CP10A), an anti-HIV peptide, into these micelles. This study provides valuable insights for the development of more effective drug delivery systems by optimizing the mixing ratios of DPC and DDM. By balancing stability and penetration efficiency, these mixed micelles can improve the delivery of drugs that face challenges crossing lipid membranes. Such advancements can enhance the efficacy of treatments for various conditions, including viral infections and cancer, by ensuring that therapeutic agents reach their intended cellular targets more effectively.
Collapse
Affiliation(s)
- Atefeh Gholizadeh
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), Tehran 15875-4313, Iran
| | - Sepideh Amjad-Iranagh
- Department
of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 15875-4313, Iran
| | - Rouein Halladj
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), Tehran 15875-4313, Iran
| |
Collapse
|
2
|
Tu CK, Mou W, Shen ZL. Computer simulation of the structural properties of fatty-acid modified PAMAM dendrimers at pH 5 and 7. J Mol Graph Model 2023; 124:108570. [PMID: 37487373 DOI: 10.1016/j.jmgm.2023.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
In this work, we performed coarse-grained molecular dynamics (CGMD) simulations of G3, G4, and G5 polyamidoamine (PAMAM) dendrimers grafting with fatty acid (FTA) chains. The FTA chains of varying length and grafting densities (50% and 100% of surface terminals) correspond to pH 7 and 5, respectively. Our findings suggested that the structural properties of dendrimers were determined by dendrimer generation, polymerization degrees, and pH. With one exception, the size of the FTA grafting dendrimer shrank after fatty acid attachment. Because of the protonation of the dendrimer's interior amines at low pH, the FTA chains are distributed at the dendrimer's surface group. At pH 7, the FTA chains that have aggregated in the interior of the dendrimer cause chain crowding. Our research provided references on drug encapsulation and the lower toxicity of these hydrophobically modified nanoparticles.
Collapse
Affiliation(s)
- Chen-Kun Tu
- Kangda College, Nanjing Medical University, Lianyungang, China.
| | - Wei Mou
- Kangda College, Nanjing Medical University, Lianyungang, China
| | - Zhuang-Lin Shen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Kordzadeh A, Zarif M, Amjad-Iranagh S. Molecular dynamics insight of interaction between the functionalized-carbon nanotube and cancerous cell membrane in doxorubicin delivery. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107332. [PMID: 36603233 DOI: 10.1016/j.cmpb.2022.107332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/08/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Doxorubicin (DOX) is a known anticancer drug which is widely used in cancer therapy. Carbon nanotubes (CNTs) are among the most promising platforms for smart drug delivery applications. However, due to the toxicity and their low sulubility their application is limited and their functionalization with wide range of biomolecules are suggested. Therefore, the functionalized carbon nanotubes (f-CNT) with carboxyl (CNT-COO) and folic acid (CNT-COO-FA) were investigated as drug-carrier. METHODS Molecular dynamics (MD) simulation along with the Density Functional Theory (DFT) methods are being used to study the drug loading process on functionalized carbon nanotubes. RESULTS The results indicate that doxorubicin molecules interact more with CNT-COO-FA than CNT-COO. The embedded dipalmitoylphosphatidylcholine (DPPC) lipid bilayer with a folate receptor was considered a cancerous cell's representative model. Then the drug release from the f-CNTs near the lipid bilayer was simulated. The results showed that CNT-COO-FA with a pH and ligand-sensitive mechanism strongly interacts with cancerous cells, which led to higher drug release, in agreement with the experimental results. The conformational changes of the lipid bilayer and folate receptor during drug release were evaluated. The analysis showed that drug release from CNT-COO-FA has significantly changed lipid bilayer and receptor conformations. The obtained results were interpreted and justified by considering the molecular mechanisms which control the drug delivery in the studied systems. CONCLUSIONS Based on the obtained results, CNT-COO-FA has a better performance during the drug release compared to CNT-COO in delivering doxorubicin. Both pH and ligand sensitive mechanisms are found to be responsible for higher drug delivery efficiency of CNT-COO-FA. In contrast, CNT-COO can only enhance drug delivery efficiently with a pH-sensitive mechanism.
Collapse
Affiliation(s)
- Azadeh Kordzadeh
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran 145888-9694, Tehran, Iran
| | - Mahdi Zarif
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 19839-9411, Tehran, Iran.
| | - Sepideh Amjad-Iranagh
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran 115875-4313, Tehran, Iran.
| |
Collapse
|
4
|
Kavyani S, Amjad-Iranagh S, Zarif M. Effect of temperature, pH, and terminal groups on structural properties of carbon nanotube-dendrimer composites: A coarse-grained molecular dynamics simulation study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
5
|
Torrik A, Zaerin S, Zarif M. Doxorubicin and Imatinib co-drug delivery using non-covalently functionalized carbon nanotube: Molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Drug-dendrimer complexes and conjugates: Detailed furtherance through theory and experiments. Adv Colloid Interface Sci 2022; 303:102639. [PMID: 35339862 DOI: 10.1016/j.cis.2022.102639] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/23/2022]
Abstract
Dendritic nanovectors-based drug delivery has gained significant attention in the past couple of decades. Dendrimers play a crucial role in deciding the solubility of sparingly soluble drug molecules and help in improving pharmacokinetics. A few important steps in drug delivery through dendrimers, such as drug encapsulation, formulation, and target-specific delivery, play an important role in deciding the fate of a drug molecule. It is also of prime importance to understand the interactions between a drug molecule and dendrimers at atomistic levels to decode the mechanism of action of drug-dendrimer complexes and their reliability in terms of drug delivery. Colossal progress in current experimental and computational approaches in the field has resulted in a vast amount of data that needs to be curated to be further implemented efficiently. Improved computational power has led to greater accuracy and prompt predictions of properties of drug-dendrimer complexes and their mechanism of action. The current review encapsulates the pioneering work in the field, experimental achievements in terms of drug delivery, and newer computational techniques employed in the advancement of the field.
Collapse
|
7
|
Molecular dynamics simulation study of doxorubicin adsorption on functionalized carbon nanotubes with folic acid and tryptophan. Sci Rep 2021; 11:24210. [PMID: 34930942 PMCID: PMC8688492 DOI: 10.1038/s41598-021-03619-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/30/2021] [Indexed: 12/05/2022] Open
Abstract
In this work, molecular dynamics (MD) simulation is used to study the adsorption of the anticancer drug, doxorubicin (DOX), on the wall or surface of pristine and functionalized carbon nanotubes (FCNTs) in an aqueous solution. Initially, the CNTs were functionalized by tryptophan (Trp) and folic acid (FA), and then the DOX molecules were added to the system. The simulation results showed that the drug molecules can intensely interact with the FCNTs at physiological pH. Furthermore, it was found that as a result of functionalization, the solubility of FCNTs in an aqueous solution increases significantly. The effect of pH variation on drug release from both pristine and FCNTs was also investigated. The obtained results indicated that in acidic environments due to protonation of functional groups (Trp) and as a result of repulsive interaction between the DOX molecule and functional groups, the release of DOX molecules from FCNT’s surface is facilitated. The drug release is also strongly dependent on the pH and protonated state of DOX and FCNT.
Collapse
|
8
|
Abbasi A, Amjad-Iranagh S, Dabir B. CellSys: An open-source tool for building initial structures for bio-membranes and drug-delivery systems. J Comput Chem 2021; 43:331-339. [PMID: 34897717 DOI: 10.1002/jcc.26793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 11/11/2022]
Abstract
Since phospholipids are the most important components in the structure of biomembranes, they deserve to be considered with a lot of attention in both experimental and computational theoretical studies using molecular simulation methods related to the research in the fields of drug design and drug delivery where they involve knowledge about the interactions of drug molecules with cell membranes. To employ the molecular simulation approach for this purpose the essential requirement is having information about the initial structure of phospholipids and how they interact with the drugs. Therefore in this article, we introduce an open-source software package in Python programming language for utilizing data manipulation for generation and developing the initial structure of biomolecular cells to provide the needed information for investigation in drug delivery systems. In addition, the proposed software package can be used for the efficient storage of membrane structural data to be exploited in designing new drug delivery systems. To verify the performance of the code and the results of the simulations, several analyses have been done, such as the calculation of area per lipid and self-diffusion coefficient, in addition to lipid order parameter. The results were in complete agreement with the references.
Collapse
Affiliation(s)
- Ali Abbasi
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sepideh Amjad-Iranagh
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Bahram Dabir
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
9
|
Marvi PK, Amjad-Iranagh S, Halladj R. Molecular Dynamics Assessment of Doxorubicin Adsorption on Surface-Modified Boron Nitride Nanotubes (BNNTs). J Phys Chem B 2021; 125:13168-13180. [PMID: 34813340 DOI: 10.1021/acs.jpcb.1c07052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Loading therapeutic agents on nanocarriers in order to protect them during drug delivery and exclusively targeting damaged tissues has gained substantial significance in biology realms in the past decade. Boron nitride nanotubes have given a new lease on designing nano delivery systems by virtue of their unique properties. The studies are still ongoing to thoroughly identify their chemical characteristics. In this study, we probed into the efficacy of boron nitride nanotubes and the impact of their surface modification by hydroxyl and amine functional groups in interaction with an anticancer drug model, i.e., doxorubicin. Defining the altered electronic properties of the nanotubes as well as the distribution of partial charges were carried out through density functional theory calculations, following the simulation of the drug loading process via molecular dynamics algorithms. The primary outcomes are inferred from systematical energies, van der Waals and electrostatic interactions, radial distribution functions, the number of hydrogen bonds, mean square displacement, diffusion coefficients, and binding free energies. Negative values of van der Waals energies imply a rapid, exothermic adsorption process whereby the contribution of these driving forces is more dominant than electrostatic ones. Ultimately, the values of overall diffusion coefficients of drugs and binding free energies, performed by the MM/PBSA approach, corroborate that the hydroxyl and amine-functionalized nanotubes reinforce the binding strength of the complexes to an approximate extent.
Collapse
Affiliation(s)
- Parham Khoshbakht Marvi
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Sepideh Amjad-Iranagh
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Rouein Halladj
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| |
Collapse
|
10
|
dehghan banadaki M, Aghaie M, Aghaie H. Folic acid functionalized boron nitride oxide as targeted drug delivery system for fludarabine and cytarabine anticancer drugs: A DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
11
|
Mollazadeh S, Sahebkar A, Shahlaei M, Moradi S. Nano drug delivery systems: Molecular dynamic simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Bunker A, Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front Mol Biosci 2020; 7:604770. [PMID: 33330633 PMCID: PMC7732618 DOI: 10.3389/fmolb.2020.604770] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
In this review, we outline the growing role that molecular dynamics simulation is able to play as a design tool in drug delivery. We cover both the pharmaceutical and computational backgrounds, in a pedagogical fashion, as this review is designed to be equally accessible to pharmaceutical researchers interested in what this new computational tool is capable of and experts in molecular modeling who wish to pursue pharmaceutical applications as a context for their research. The field has become too broad for us to concisely describe all work that has been carried out; many comprehensive reviews on subtopics of this area are cited. We discuss the insight molecular dynamics modeling has provided in dissolution and solubility, however, the majority of the discussion is focused on nanomedicine: the development of nanoscale drug delivery vehicles. Here we focus on three areas where molecular dynamics modeling has had a particularly strong impact: (1) behavior in the bloodstream and protective polymer corona, (2) Drug loading and controlled release, and (3) Nanoparticle interaction with both model and biological membranes. We conclude with some thoughts on the role that molecular dynamics simulation can grow to play in the development of new drug delivery systems.
Collapse
Affiliation(s)
- Alex Bunker
- Division of Pharmaceutical Biosciences, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Singhania A, Dutta M, Saha S, Sahoo P, Bora B, Ghosh S, Fujita D, Bandyopadhyay A. Speedy one-pot electrochemical synthesis of giant octahedrons from in situ generated pyrrolidinyl PAMAM dendrimer. SOFT MATTER 2020; 16:9140-9146. [PMID: 32926056 DOI: 10.1039/d0sm00819b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel electrochemical synthesis via a radical generation pathway is described here for the generation of a quaternary megamer structure from secondary dendrimers. The reaction is rapid and completes in <5 min. We have used lower/higher generation poly(amido)amine (PAMAM) dendrimers with carboxylic acid groups at the terminals. A precise electrocatalytic reaction at >3.5 V activates the carboxylic groups to undergo anodic oxidation (-e-) and produce radical carboxylate anions on the dendrimer surface. The reaction further goes through a decarboxylative elimination. Successive self-assembly creates billions of polydispersed and extremely stable ∼500 nm octahedron nanostructures, which we failed to destroy even by using a 20 kV electron beam. This is a new route for the speedy synthesis of important futuristic materials of well-defined shape. It has applications in building designer organic crystals for solar cells, organic electronics, rapid protein gelation, rapid protein crystallization, etc.
Collapse
Affiliation(s)
- Anup Singhania
- Chemical Science & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam-785006, India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006, India
| | - Mrinal Dutta
- PV Metrology Group, Advanced Materials Devices and Metrology Division, CSIR-National Physical Laboratory, New Delhi-110012, India and Academy of Scientific and Innovative Research (AcSIR), CSIR-NPL Campus, New Delhi-110012, India
| | - Supriya Saha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006, India and Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam-785006, India
| | - Pathik Sahoo
- International Center for Materials and Nanoarchitectronics (MANA) and Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Japan
| | - Bharati Bora
- Chemical Science & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam-785006, India.
| | - Subrata Ghosh
- Chemical Science & Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam-785006, India. and Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST Campus, Jorhat, Assam 785006, India
| | - Daisuke Fujita
- Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Japan
| | - Anirban Bandyopadhyay
- International Center for Materials and Nanoarchitectronics (MANA) and Research Center for Advanced Measurement and Characterization (RCAMC), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Japan
| |
Collapse
|
14
|
Tu CK, Xi WJ, Shen ZL, Wu YJ. Computer simulation of fullerene polymers interacting with DPPC membrane: patchy functionalised modification and sequence effect. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1787408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Chen-kun Tu
- Kangda College, Nanjing Medical University, Lianyungang, People’s Republic of China
| | - Wen-jing Xi
- Kangda College, Nanjing Medical University, Lianyungang, People’s Republic of China
| | - Zhuang-lin Shen
- Center for Soft Condensed Matter Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou, People’s Republic of China
| | - Yang-jiang Wu
- Department of Materials Science, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
15
|
Lee H. Molecular Simulations of PEGylated Biomolecules, Liposomes, and Nanoparticles for Drug Delivery Applications. Pharmaceutics 2020; 12:E533. [PMID: 32531886 PMCID: PMC7355693 DOI: 10.3390/pharmaceutics12060533] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Since the first polyethylene glycol (PEG)ylated protein was approved by the FDA in 1990, PEGylation has been successfully applied to develop drug delivery systems through experiments, but these experimental results are not always easy to interpret at the atomic level because of the limited resolution of experimental techniques. To determine the optimal size, structure, and density of PEG for drug delivery, the structure and dynamics of PEGylated drug carriers need to be understood close to the atomic scale, as can be done using molecular dynamics simulations, assuming that these simulations can be validated by successful comparisons to experiments. Starting with the development of all-atom and coarse-grained PEG models in 1990s, PEGylated drug carriers have been widely simulated. In particular, recent advances in computer performance and simulation methodologies have allowed for molecular simulations of large complexes of PEGylated drug carriers interacting with other molecules such as anticancer drugs, plasma proteins, membranes, and receptors, which makes it possible to interpret experimental observations at a nearly atomistic resolution, as well as help in the rational design of drug delivery systems for applications in nanomedicine. Here, simulation studies on the following PEGylated drug topics will be reviewed: proteins and peptides, liposomes, and nanoparticles such as dendrimers and carbon nanotubes.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, Korea
| |
Collapse
|
16
|
Kordzadeh A, Amjad-Iranagh S, Zarif M, Modarress H. Adsorption and encapsulation of the drug doxorubicin on covalent functionalized carbon nanotubes: A scrutinized study by using molecular dynamics simulation and quantum mechanics calculation. J Mol Graph Model 2018; 88:11-22. [PMID: 30616088 DOI: 10.1016/j.jmgm.2018.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/20/2018] [Accepted: 12/12/2018] [Indexed: 01/18/2023]
Abstract
Adsorption of the drug doxorubicin (DOX) onto covalent functionalized carbon nanotubes (CNTs) as drug carriers was studied by employing molecular dynamics (MD) simulation. CNT was covalently functionalized by the chemical groups: amine, carboxyl and hydroxyl and the change in the electrostatic charge of CNT as a result of functionalization was investigated by quantum mechanics calculations. The drug adsorption onto the functionalized CNTs (f-CNT) was examined by analyzing the evaluated radial probability of the drug by MD simulation. Overall consideration of the results demonstrated that surface functionalization enhances the loading capacity of CNT for the drug encapsulation, also agglomeration of unprotonated drug molecules has increased encapsulation capacity. Analysis of the obtained results indicated that carboxyl and amine f-CNTs can act as a pH sensitive drug carrier where their protonation in acidic condition can decrease the electrostatic interactions of the loaded drug with the f-CNT and as a result can promote the drug release.
Collapse
Affiliation(s)
- Azadeh Kordzadeh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sepideh Amjad-Iranagh
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mahdi Zarif
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Hamid Modarress
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran, Iran.
| |
Collapse
|
17
|
Kavyani S, Dadvar M, Modarress H, Amjad-Iranagh S. Molecular Perspective Mechanism for Drug Loading on Carbon Nanotube–Dendrimer: A Coarse-Grained Molecular Dynamics Study. J Phys Chem B 2018; 122:7956-7969. [PMID: 30067904 DOI: 10.1021/acs.jpcb.8b04434] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sajjad Kavyani
- Department of Chemical Engineering, Amirkabir University of Technology, 158754413 Tehran, Iran
| | - Mitra Dadvar
- Department of Chemical Engineering, Amirkabir University of Technology, 158754413 Tehran, Iran
| | - Hamid Modarress
- Department of Chemical Engineering, Amirkabir University of Technology, 158754413 Tehran, Iran
| | - Sepideh Amjad-Iranagh
- Department of Chemical Engineering, Amirkabir University of Technology, 158754413 Tehran, Iran
| |
Collapse
|