1
|
Khattignavong E, Neshatian M, Vaez M, Guillermin A, Tauer JT, Odlyha M, Mittal N, Komarova SV, Zahouani H, Bozec L. Development of a facile method to compute collagen network pathological anisotropy using AFM imaging. Sci Rep 2023; 13:20173. [PMID: 37978303 PMCID: PMC10656449 DOI: 10.1038/s41598-023-47350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023] Open
Abstract
Type I collagen, a fundamental extracellular matrix (ECM) component, is pivotal in maintaining tissue integrity and strength. It is also the most prevalent fibrous biopolymer within the ECM, ubiquitous in mammalian organisms. This structural protein provides essential mechanical stability and resilience to various tissues, including tendons, ligaments, skin, bone, and dentin. Collagen has been structurally investigated for several decades, and variation to its ultrastructure by histology has been associated with several pathological conditions. The current study addresses a critical challenge in the field of collagen research by providing a novel method for studying collagen fibril morphology at the nanoscale. It offers a computational approach to quantifying collagen properties, enabling a deeper understanding of how collagen type I can be affected by pathological conditions. The application of Fast Fourier Transform (FFT) coupled with Atomic Force Microscope (AFM) imaging distinguishes not only healthy and diseased skin but also holds potential for automated diagnosis of connective tissue disorders (CTDs), contributing to both clinical diagnostics and fundamental research in this area. Here we studied the changes in the structural parameters of collagen fibrils in Ehlers Danlos Syndrome (EDS). We have used skin extracted from genetically mutant mice that exhibit EDS phenotype as our model system (Col1a1Jrt/+ mice). The collagen fibrils were analyzed by AFM based descriptive-structural parameters, coupled with a 2D Fast Fourier Transform(2D-FFT) approach that automated the analysis of AFM images. In addition, each sample was characterized based on its FFT and power spectral density. Our qualitative data showed morphological differences in collagen fibril clarity (clearness of the collagen fibril edge with their neighbouring fibri), D-banding, orientation, and linearity. We have also demonstrated that FFT could be a new tool for distinguishing healthy from tissues with CTDs by measuring the disorganization of fibrils in the matrix. We have also employed FFT to reveal the orientations of the collagen fibrils, providing clinically relevant phenotypic information on their organization and anisotropy. The result of this study can be used to develop a new automated tool for better diagnosis of CTDs.
Collapse
Affiliation(s)
- Emilie Khattignavong
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
- UMR 5513, Laboratoire de Tribologie et Dynamique Des Systémes, École Centrale de Lyon-École Nationale d'Ingénieurs de Saint, Université de Lyon, Étienne, France
| | - Mehrnoosh Neshatian
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
| | - Mina Vaez
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada
| | - Amaury Guillermin
- UMR 5513, Laboratoire de Tribologie et Dynamique Des Systémes, École Centrale de Lyon-École Nationale d'Ingénieurs de Saint, Université de Lyon, Étienne, France
| | - Josephine T Tauer
- Shriners Hospital for Children, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Marianne Odlyha
- School of Biological Science, Birkbeck College, University of London, London, UK
| | - Nimish Mittal
- Division of Physical Medicine and Rehabilitation, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Svetlana V Komarova
- Shriners Hospital for Children, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| | - Hassan Zahouani
- UMR 5513, Laboratoire de Tribologie et Dynamique Des Systémes, École Centrale de Lyon-École Nationale d'Ingénieurs de Saint, Université de Lyon, Étienne, France
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
2
|
Leighton MP, Kreplak L, Rutenberg AD. Torsion and bistability of double-twist elastomers. SOFT MATTER 2023; 19:6376-6386. [PMID: 37577969 DOI: 10.1039/d3sm00554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
We investigate the elastic properties of anisotropic elastomers with a double-twist director field, which is a model for collagen fibrils or blue phases. We observe a significant Poynting-like effect, coupling torsion (fibril twist) and extension. For freely-rotating boundary conditions, we identify a structural bistability at very small extensional strains which undergoes a saddle-node bifurcation at a critical strain - at approximately 1% strain for a parameterization appropriate for collagen fibrils. With clamped boundary conditions appropriate for many experimental setups, the bifurcation is not present. We expect significant helical shape effects when fixed torsion does not equal the equilibrium torsion of freely-rotating boundary conditions, due to residual torques.
Collapse
Affiliation(s)
- Matthew P Leighton
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Laurent Kreplak
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Andrew D Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
3
|
Al-Qudsy L, Hu YW, Xu H, Yang PF. Mineralized Collagen Fibrils: An Essential Component in Determining the Mechanical Behavior of Cortical Bone. ACS Biomater Sci Eng 2023; 9:2203-2219. [PMID: 37075172 DOI: 10.1021/acsbiomaterials.2c01377] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Bone comprises mechanically different materials in a specific hierarchical structure. Mineralized collagen fibrils (MCFs), represented by tropocollagen molecules and hydroxyapatite nanocrystals, are the fundamental unit of bone. The mechanical characterization of MCFs provides the unique adaptive mechanical competence to bone to withstand mechanical load. The structural and mechanical role of MCFs is critical in the deformation mechanisms of bone and the marvelous strength and toughness possessed by bone. However, the role of MCFs in the mechanical behavior of bone across multiple length scales is not fully understood. In the present study, we shed light upon the latest progress regarding bone deformation at multiple hierarchical levels and emphasize the role of MCFs during bone deformation. We propose the concept of hierarchical deformation of bone to describe the interconnected deformation process across multiple length scales of bone under mechanical loading. Furthermore, how the deterioration of bone caused by aging and diseases impairs the hierarchical deformation process of the cortical bone is discussed. The present work expects to provide insights on the characterization of MCFs in the mechanical properties of bone and lays the framework for the understanding of the multiscale deformation mechanics of bone.
Collapse
Affiliation(s)
- Luban Al-Qudsy
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Medical Instrumentation Engineering Techniques, Electrical Engineering Technical College, Middle Technical University, 8998+QHJ Baghdad, Iraq
| | - Yi-Wei Hu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng-Fei Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
4
|
Spencer RKW, Ha BY, Saeidi N. Interplay between nematic and cholesteric interactions in self-consistent field theory. Phys Rev E 2022; 105:054501. [PMID: 35706232 DOI: 10.1103/physreve.105.054501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Chirality is a design feature of a number of biomolecules (e.g., collagen). In these molecules, cholesteric (chiral-nematic) behavior emerges from a combination of the tendency for the biopolymers to align (nematic interactions) and for the alignment direction to change with position, rotating around an axis normal to the alignment direction. This paper presents self-consistent field theory (SCFT) of chiral-nematic polymers, which takes into account polymer flexibility and the orientational degrees of freedom of polymer segments. Using the resulting SCFT, we construct a phase diagram showing regions of stability for isotropic, nematic, and cholesteric phases. Furthermore, we find that nematic interactions can stabilize the cholesteric phase, pushing the isotropic-cholesteric phase transition to lower cholesteric interaction strength, until the isotropic-nematic-cholesteric triple point is reached.
Collapse
Affiliation(s)
- Russell K W Spencer
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Nima Saeidi
- Department of Surgery, The Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
5
|
Tropocollagen springs allow collagen fibrils to stretch elastically. Acta Biomater 2022; 142:185-193. [PMID: 35081430 PMCID: PMC8982519 DOI: 10.1016/j.actbio.2022.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/28/2022]
Abstract
The mechanical properties of connective tissues are tailored to their specific function, and changes can lead to dysfunction and pathology. In most mammalian tissues the mechanical environment is governed by the micro- and nano-scale structure of collagen and its interaction with other tissue components, however these hierarchical properties remain poorly understood. In this study we use the human cornea as a model system to characterise and quantify the dominant deformation mechanisms of connective tissue in response to cyclic loads of physiological magnitude. Synchronised biomechanical testing, x-ray scattering and 3D digital image correlation revealed the presence of two dominant mechanisms: collagen fibril elongation due to a largely elastic, spring-like straightening of tropocollagen supramolecular twist, and a more viscous straightening of fibril crimp that gradually increased over successive loading cycles. The distinct mechanical properties of the two mechanisms suggest they have separate roles in vivo. The elastic, spring-like mechanism is fast-acting and likely responds to stresses associated with the cardiac cycle, while the more viscous crimp mechanism will respond to slower processes, such as postural stresses. It is anticipated that these findings will have broad applicability to understanding the normal and pathological functioning of other connective tissues such as skin and blood vessels that exhibit both helical structures and crimp. Statement of significance The tropocollagen spring mechanism allows collagen fibrils from some tissues to elongate significantly under small loads, and its recent discovery has the potential to change our fundamental understanding of how tissue deforms. This time-resolved study quantifies the contribution of the spring mechanism to the local strain in stretched tissue and compares it to the contribution associated with the straightening of fibril waviness, the widely accepted primary low-load strain mechanism. The spring mechanism contributed more to the local tissue strain than fibril straightening, and was found to be elastic while fibril straightening was more viscous. The results suggest that the viscoelastic behaviour of a biomaterial is controlled, at least in part, by the relative amount of fibril-scale crimp and tropocollagen supramolecular twist.
Collapse
|
6
|
Spencer RKW, Ha BY, Saeidi N. Self-consistent field theory of chiral nematic worm-like chains. J Chem Phys 2022; 156:114902. [PMID: 35317576 PMCID: PMC8934192 DOI: 10.1063/5.0078937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Many macromolecules of biological and technological interest are both chiral and semi-flexible. DNA and collagen are good examples. Such molecules often form chiral nematic (or cholesteric) phases, as is well-documented in collagen and chitin. This work presents a method for studying cholesteric phases in the highly successful self-consistent field theory of worm-like chains, offering a new way of studying many biologically relevant molecules. The method involves an effective Hamiltonian with a chiral term inspired by the Oseen-Frank (OF) model of liquid crystals. This method is then used to examine the formation of cholesteric phases in chiral-nematic worm-like chains as a function of polymer flexibility, as well as the optimal cholesteric pitch and distribution of polymer segment orientations. Our approach not only allows for the determination of the isotropic-cholesteric transition and segment distributions, beyond what the OF model promises, but also explicitly incorporates polymer flexibility into the study of the cholesteric phase, offering a more complete understanding of the behavior of semiflexible chiral-nematic polymers.
Collapse
Affiliation(s)
- Russell K. W. Spencer
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
- Authors to whom correspondence should be addressed: and
| | - Nima Saeidi
- Department of Surgery, The Center for Engineering in Medicine (CEM), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
7
|
Revell CK, Jensen OE, Shearer T, Lu Y, Holmes DF, Kadler KE. Collagen fibril assembly: New approaches to unanswered questions. Matrix Biol Plus 2021; 12:100079. [PMID: 34381990 PMCID: PMC8334717 DOI: 10.1016/j.mbplus.2021.100079] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Collagen fibrils are essential for metazoan life. They are the largest, most abundant, and most versatile protein polymers in animals, where they occur in the extracellular matrix to form the structural basis of tissues and organs. Collagen fibrils were first observed at the turn of the 20th century. During the last 40 years, the genes that encode the family of collagens have been identified, the structure of the collagen triple helix has been solved, the many enzymes involved in the post-translational modifications of collagens have been identified, mutations in the genes encoding collagen and collagen-associated proteins have been linked to heritable disorders, and changes in collagen levels have been associated with a wide range of diseases, including cancer. Yet despite extensive research, a full understanding of how cells assemble collagen fibrils remains elusive. Here, we review current models of collagen fibril self-assembly, and how cells might exert control over the self-assembly process to define the number, length and organisation of fibrils in tissues.
Collapse
Affiliation(s)
- Christopher K. Revell
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Oliver E. Jensen
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Tom Shearer
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Yinhui Lu
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - David F. Holmes
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Karl E. Kadler
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
8
|
Hagan MF, Grason GM. Equilibrium mechanisms of self-limiting assembly. REVIEWS OF MODERN PHYSICS 2021; 93:025008. [PMID: 35221384 PMCID: PMC8880259 DOI: 10.1103/revmodphys.93.025008] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Self-assembly is a ubiquitous process in synthetic and biological systems, broadly defined as the spontaneous organization of multiple subunits (e.g. macromolecules, particles) into ordered multi-unit structures. The vast majority of equilibrium assembly processes give rise to two states: one consisting of dispersed disassociated subunits, and the other, a bulk-condensed state of unlimited size. This review focuses on the more specialized class of self-limiting assembly, which describes equilibrium assembly processes resulting in finite-size structures. These systems pose a generic and basic question, how do thermodynamic processes involving non-covalent interactions between identical subunits "measure" and select the size of assembled structures? In this review, we begin with an introduction to the basic statistical mechanical framework for assembly thermodynamics, and use this to highlight the key physical ingredients that ensure equilibrium assembly will terminate at finite dimensions. Then, we introduce examples of self-limiting assembly systems, and classify them within this framework based on two broad categories: self-closing assemblies and open-boundary assemblies. These include well-known cases in biology and synthetic soft matter - micellization of amphiphiles and shell/tubule formation of tapered subunits - as well as less widely known classes of assemblies, such as short-range attractive/long-range repulsive systems and geometrically-frustrated assemblies. For each of these self-limiting mechanisms, we describe the physical mechanisms that select equilibrium assembly size, as well as potential limitations of finite-size selection. Finally, we discuss alternative mechanisms for finite-size assemblies, and draw contrasts with the size-control that these can achieve relative to self-limitation in equilibrium, single-species assemblies.
Collapse
Affiliation(s)
- Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
9
|
Leighton MP, Kreplak L, Rutenberg AD. Non-equilibrium growth and twist of cross-linked collagen fibrils. SOFT MATTER 2021; 17:1415-1427. [PMID: 33325971 DOI: 10.1039/d0sm01830a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The lysyl oxidase (LOX) enzyme that catalyses cross-link formation during the assembly of collagen fibrils in vivo is too large to diffuse within assembled fibrils, and so is incompatible with a fully equilibrium mechanism for fibril formation. We propose that enzymatic cross-links are formed at the fibril surface during the growth of collagen fibrils; as a consequence no significant reorientation of previously cross-linked collagen molecules occurs inside collagen fibrils during fibril growth in vivo. By imposing local equilibrium only at the fibril surface, we develop a coarse-grained quantitative model of in vivo fibril structure that incorporates a double-twist orientation of collagen molecules and a periodic D-band density modulation along the fibril axis. Radial growth is controlled by the concentration of available collagen molecules outside the fibril. In contrast with earlier equilibrium models of fibril structure, we find that all fibrils can exhibit a core-shell structure that is controlled only by the fibril radius. At small radii a core is developed with a linear double-twist structure as a function of radius. Within the core the double-twist structure is largely independent of the D-band. Within the shell at larger radii, the structure approaches a constant twist configuration that is strongly coupled with the D-band. We suggest a stable radius control mechanism that corneal fibrils can exploit near the edge of the linear core regime; while larger tendon fibrils use a cruder version of growth control that does not select a preferred radius.
Collapse
Affiliation(s)
- Matthew P Leighton
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Laurent Kreplak
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | - Andrew D Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
10
|
Michaels TCT, Memet E, Mahadevan L. Mechanical basis for fibrillar bundle morphology. SOFT MATTER 2020; 16:9306-9318. [PMID: 32935723 DOI: 10.1039/d0sm01145b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the morphology of self-assembled fibrillar bundles and aggregates is relevant to a range of problems in molecular biology, supramolecular chemistry and materials science. Here, we propose a coarse-grained approach that averages over specific molecular details and yields an effective mechanical theory for the spatial complexity of self-assembling fibrillar structures that arises due to the competing effects of (the bending and twisting) elasticity of individual filaments and the adhesive interactions between them. We show that our theoretical framework accounting for this allows us to capture a number of diverse fibril morphologies observed in natural and synthetic systems, ranging from Filopodia to multi-walled carbon nanotubes, and leads to a phase diagram of possible fibril shapes. We also show how the extreme sensitivity of these morphologies can lead to spatially chaotic structures. Together, these results suggest a common mechanical basis for mesoscale fibril morphology as a function of the nanoscale mechanical properties of its filamentous constituents.
Collapse
Affiliation(s)
- Thomas C T Michaels
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Edvin Memet
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - L Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA and Department of Physics, Harvard University, Cambridge, MA 02138, USA and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
11
|
Hafner AE, Gyori NG, Bench CA, Davis LK, Šarić A. Modeling Fibrillogenesis of Collagen-Mimetic Molecules. Biophys J 2020; 119:1791-1799. [PMID: 33049216 DOI: 10.1016/j.bpj.2020.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/18/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022] Open
Abstract
One of the most robust examples of self-assembly in living organisms is the formation of collagen architectures. Collagen type I molecules are a crucial component of the extracellular matrix, where they self-assemble into fibrils of well-defined axial striped patterns. This striped fibrillar pattern is preserved across the animal kingdom and is important for the determination of cell phenotype, cell adhesion, and tissue regulation and signaling. The understanding of the physical processes that determine such a robust morphology of self-assembled collagen fibrils is currently almost completely missing. Here, we develop a minimal coarse-grained computational model to identify the physical principles of the assembly of collagen-mimetic molecules. We find that screened electrostatic interactions can drive the formation of collagen-like filaments of well-defined striped morphologies. The fibril axial pattern is determined solely by the distribution of charges on the molecule and is robust to the changes in protein concentration, monomer rigidity, and environmental conditions. We show that the striped fibrillar pattern cannot be easily predicted from the interactions between two monomers but is an emergent result of multibody interactions. Our results can help address collagen remodeling in diseases and aging and guide the design of collagen scaffolds for biotechnological applications.
Collapse
Affiliation(s)
- Anne E Hafner
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Noemi G Gyori
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Ciaran A Bench
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Luke K Davis
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom; London Centre for Nanotechnology, University College London, London, United Kingdom
| | - Anđela Šarić
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom; MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.
| |
Collapse
|
12
|
Spencer RKW, Saeidi N, Ha BY. Nematic ordering of worm-like polymers near an interface. J Chem Phys 2020; 152:204907. [PMID: 32486695 PMCID: PMC7261236 DOI: 10.1063/1.5132928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/03/2020] [Indexed: 11/14/2022] Open
Abstract
The phase behavior of semi-flexible polymers is integral to various contexts, from materials science to biophysics, many of which utilize or require specific confinement geometries as well as the orientational behavior of the polymers. Inspired by collagen assembly, we study the orientational ordering of semi-flexible polymers, modeled as Maier-Saupe worm-like chains, using self-consistent field theory. We first examine the bulk behavior of these polymers, locating the isotropic-nematic transition and delineating the limit of stability of the isotropic and nematic phases. This effort explains how nematic ordering emerges from the isotropic phase and offers insight into how different (e.g., mono-domain vs multi-domain) nematic phases form. We then clarify the influence of planar confinement on the nematic ordering of the polymers. We find that while the presence of a single confining wall does not shift the location of nematic transition, it aligns the polymers in parallel to the wall; above the onset of nematic transition, this preference tends to propagate into the bulk phase. Introducing a second, perpendicular, wall leads to a nematic phase that is parallel to both walls, allowing the ordering direction to be uniquely set by the geometry of the experimental setup. The advantage of wall-confinement is that it can be used to propagate mono-domain nematic phases into the bulk phase.
Collapse
Affiliation(s)
- Russell K. W. Spencer
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Nima Saeidi
- Department of Surgery, The Center for Engineering in Medicine (CEM), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
13
|
Grason GM. Chiral and achiral mechanisms of self-limiting assembly of twisted bundles. SOFT MATTER 2020; 16:1102-1116. [PMID: 31894228 DOI: 10.1039/c9sm01840a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A generalized theory of the self-limiting assembly of twisted bundles of filaments and columns is presented. Bundles and fibers form in a broad variety of supramolecular systems, from biological to synthetic materials. A widely-invoked mechanism to explain their finite diameter relies on chirality transfer from the molecular constituents to collective twist of the assembly, the effect of which frustrates the lateral assembly and can select equilibrium, finite diameters of bundles. In this article, the thermodynamics of twisted-bundle assembly is analyzed to understand if chirality transfer is necessary for self-limitation, or instead, if spontaneously-twisting, achiral bundles also exhibit self-limited assembly. A generalized description is invoked for the elastic costs imposed by twist for bundles of various states of intra-bundle order from nematic to crystalline, as well as a generic mechanism for generating twist, classified both by chirality but also the twist susceptibility of inter-filament alignment. The theory provides a comprehensive set of predictions for the equilibrium twist and size of bundles as a function of surface energy as well as chirality, twist susceptibility, and elasticity of bundles. Moreover, it shows that while spontaneous twist can lead to self-limitation, assembly of twisted achiral bundles can be distinguished qualitatively in terms of their range of equilibrium sizes and thermodynamic stability relative to bulk (untwisted) states.
Collapse
Affiliation(s)
- Gregory M Grason
- Department of Polymer Science, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
14
|
Revealing the assembly of filamentous proteins with scanning transmission electron microscopy. PLoS One 2019; 14:e0226277. [PMID: 31860683 PMCID: PMC6924676 DOI: 10.1371/journal.pone.0226277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
Filamentous proteins are responsible for the superior mechanical strength of our cells and tissues. The remarkable mechanical properties of protein filaments are tied to their complex molecular packing structure. However, since these filaments have widths of several to tens of nanometers, it has remained challenging to quantitatively probe their molecular mass density and three-dimensional packing order. Scanning transmission electron microscopy (STEM) is a powerful tool to perform simultaneous mass and morphology measurements on filamentous proteins at high resolution, but its applicability has been greatly limited by the lack of automated image processing methods. Here, we demonstrate a semi-automated tracking algorithm that is capable of analyzing the molecular packing density of intra- and extracellular protein filaments over a broad mass range from STEM images. We prove the wide applicability of the technique by analyzing the mass densities of two cytoskeletal proteins (actin and microtubules) and of the main protein in the extracellular matrix, collagen. The high-throughput and spatial resolution of our approach allow us to quantify the internal packing of these filaments and their polymorphism by correlating mass and morphology information. Moreover, we are able to identify periodic mass variations in collagen fibrils that reveal details of their axially ordered longitudinal self-assembly. STEM-based mass mapping coupled with our tracking algorithm is therefore a powerful technique in the characterization of a wide range of biological and synthetic filaments.
Collapse
|
15
|
Charvolin J, Sadoc JF. Type-I collagen fibrils: From growth morphology to local order. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:49. [PMID: 31011856 DOI: 10.1140/epje/i2019-11812-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
The length of type-I collagen fibrils in solution increases through the development and progress of pointed tips appearing successively at the two ends of an axis-symmetric shaft with constant diameter. Those tips, respectively fine ([Formula: see text]) or coarse ([Formula: see text]) have opposite molecular orientations. The [Formula: see text]-pointed tips, the first to appear, are particularly remarkable as they all show, on most of their length, a common parabolic profile which stays constant during the growth. Assuming that the latter occurs by lateral accretion of individual molecules in staggered configuration, we propose to give account of this prominent morphological feature along a purely geometrical argument, the profile of a tip being linked to the shape of the trajectories followed all along the accretion process. Among several possible trajectories, Fermat spirals lead to a parabolic profile in perfect agreement with the one observed for [Formula: see text]-pointed tips. This is to be put in relation with the presence of such spirals in phyllotactic patterns which ensure the best packing efficiency in cases of axis-symmetry, which is indeed that of dense collagen fibrils. Moreover, those patterns are structured by concentric circles of dislocations, constitutive of the structure itself, whose behaviour might contribute to the mechanical properties of the fibrils.
Collapse
Affiliation(s)
- Jean Charvolin
- Laboratoire de Physique des Solides (CNRS-UMR 8502), Bât. 510, Université Paris-Sud (Paris-Saclay), F91405, Orsay cedex, France
| | - Jean-François Sadoc
- Laboratoire de Physique des Solides (CNRS-UMR 8502), Bât. 510, Université Paris-Sud (Paris-Saclay), F91405, Orsay cedex, France.
| |
Collapse
|
16
|
Khadem SA, Rey AD. Thermodynamic modelling of acidic collagenous solutions: from free energy contributions to phase diagrams. SOFT MATTER 2019; 15:1833-1846. [PMID: 30694286 DOI: 10.1039/c8sm02140f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tropocollagen is considered one of the main precursors in the fabrication of collagen-based biomaterials. Triple helix acidic solutions of collagen I have been shown experimentally to lead to chiral plywood architectures found in bone and "cornea" like tissues. As these plywoods are solid analogues of liquid crystal architectures, bio-inspired processing and fabrication platforms based on liquid crystal physics and thermodynamics will continue to play an essential role. For tissue engineering applications, it has been shown that dilute isotropic collagen solutions need to be flow processed first and then dehydrated. Thus, a complete fundamental understanding of the thermodynamics and free energy contributions in acidic collagen aqueous solutions is necessary to avoid expensive trial-and-error fabrication. To achieve this goal, we analyze the microscopic mechanisms of ordering and interactions in solutions of triple helix collagen, namely mixing, attraction, excluded-volume and chirality. To capture the mentioned physics, we then incorporate and integrate the Flory-Huggins, Maier-Saupe, Onsager and Frank theories. Nonetheless, they together are incapable of providing an acceptable mesophasic description in acidic collagenous solutions because tropocollagen biomacromolecules are positively charged. We then explore a simple and accurate electrostatic mean-field potential. Our results on collagen are in good agreement with experiments and include phase diagrams, phase transition thresholds, and critical isotropic/cholesteric order parameters. The present extended theory is shown to properly converge to classical liquid crystal models and is used to express the phenomenological Landau-de Gennes parameters with more fundamental quantities. This study provides a platform to derive accurate process models for the fabrication of collagen-based materials, considering and benefitting from the full range of underlying interactions.
Collapse
Affiliation(s)
- Sayyed Ahmad Khadem
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada.
| | | |
Collapse
|