1
|
Kumar A, Quint DA, Dasbiswas K. Range and strength of mechanical interactions of force dipoles in elastic fiber networks. SOFT MATTER 2023. [PMID: 37470114 DOI: 10.1039/d3sm00381g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Mechanical forces generated by myosin II molecular motors drive diverse cellular processes, most notably shape change, division and locomotion. These forces may be transmitted over long range through the cytoskeletal medium - a disordered, viscoelastic network of biopolymers. The resulting cell size scale force chains can in principle mediate mechanical interactions between distant actomyosin units, leading to self-organized structural order in the cell cytoskeleton. Inspired by such force transmission through elastic structures in the cytoskeleton, we consider a percolated fiber lattice network, where fibers are represented as linear elastic elements that can both bend and stretch, and the contractile activity of myosin motors is represented by force dipoles. Then, by using a variety of metrics, we show how two such contractile force dipoles interact with each other through their mutual mechanical deformations of the elastic fiber network. As a prelude to two-dipole interactions, we quantify how forces propagate through the network from a single anisotropic force dipole by analyzing clusters of nodes connected by highly strained bonds, as well as through the decay rate of strain energy with distance from a force dipole. We show that predominant fiber bending screens out force propagation, resulting in reduced and strongly network configuration-dependent dipole interactions. On the other hand, stretching-dominated networks support longer-ranged inter-dipole interactions that recapitulate the predictions of linear elasticity theory. By characterizing the differences between tensile and compressive force propagation in the fiber network, we show how inter-dipole interaction depends on the dipoles' mutual separation and orientation. The resulting elastic interaction energy may mediate a force between multiple distant dipoles, leading to their self-organization into ordered configurations. This provides a potential pathway for active mechanical force-driven structural order in elastic biopolymer networks.
Collapse
Affiliation(s)
- Abhinav Kumar
- Department of Physics, University of California, Merced, Merced, CA 95343, USA.
| | - David A Quint
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Kinjal Dasbiswas
- Department of Physics, University of California, Merced, Merced, CA 95343, USA.
| |
Collapse
|
2
|
Yang H, Berthier E, Li C, Ronceray P, Han YL, Broedersz CP, Cai S, Guo M. Local response and emerging nonlinear elastic length scale in biopolymer matrices. Proc Natl Acad Sci U S A 2023; 120:e2304666120. [PMID: 37252962 PMCID: PMC10265995 DOI: 10.1073/pnas.2304666120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/16/2023] [Indexed: 06/01/2023] Open
Abstract
Nonlinear stiffening is a ubiquitous property of major types of biopolymers that make up the extracellular matrices (ECM) including collagen, fibrin, and basement membrane. Within the ECM, many types of cells such as fibroblasts and cancer cells have a spindle-like shape that acts like two equal and opposite force monopoles, which anisotropically stretch their surroundings and locally stiffen the matrix. Here, we first use optical tweezers to study the nonlinear force-displacement response to localized monopole forces. We then propose an effective-probe scaling argument that a local point force application can induce a stiffened region in the matrix, which can be characterized by a nonlinear length scale R* that increases with the increasing force magnitude; the local nonlinear force-displacement response is a result of the nonlinear growth of this effective probe that linearly deforms an increasing portion of the surrounding matrix. Furthermore, we show that this emerging nonlinear length scale R* can be observed around living cells and can be perturbed by varying matrix concentration or inhibiting cell contractility.
Collapse
Affiliation(s)
- Haiqian Yang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Estelle Berthier
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, MünchenD-80333, Germany
| | - Chenghai Li
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA92093
| | - Pierre Ronceray
- Aix Marseille University, CNRS, CINAM, Turing Center for Living Systems, 13288Marseille, France
| | - Yu Long Han
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Chase P. Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, MünchenD-80333, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam1081 HV, The Netherlands
| | - Shengqiang Cai
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA92093
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
3
|
Panchenko AY, Tchaicheeyan O, Berinskii IE, Lesman A. Does the Extracellular Matrix Support Cell-Cell Communication by Elastic Wave Packets? ACS Biomater Sci Eng 2022; 8:5155-5170. [PMID: 36346743 DOI: 10.1021/acsbiomaterials.2c01049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The extracellular matrix (ECM) is a fibrous network supporting biological cells and provides them a medium for interaction. Cells modify the ECM by applying traction forces, and these forces can propagate to long ranges and establish a mechanism of mechanical communication between neighboring cells. Previous studies have mainly focused on analysis of static force transmission across the ECM. In this study, we explore the plausibility of dynamic mechanical interaction, expressed as vibrations or abrupt fluctuations, giving rise to elastic waves propagating along ECM fibers. We use a numerical mass-spring model to simulate the longitudinal and transversal waves propagating along a single ECM fiber and across a 2D random fiber network. The elastic waves are induced by an active contracting cell (signaler) and received by a passive neighboring cell (receiver). We show that dynamic wave propagation may amplify the signal at the receiver end and support up to an order of magnitude stronger mechanical cues and longer-ranged communication relative to static transmission. Also, we report an optimal impulse duration corresponding to the most effective transmission, as well as extreme fast impulses, in which the waves are encaged around the active cell and do not reach the neighboring cell, possibly due to the Anderson localization effect. Finally, we also demonstrate that extracellular fluid viscosity reduces, but still allows, dynamic propagation along embedded ECM fibers. Our results motivate future biological experiments in mechanobiology to investigate, on the one hand, the mechanosensitivity of cells to dynamic forces traveling and guided by the ECM and, on the other hand, the impact of ECM architecture and remodeling on dynamic force transmission and its spectral filtering, dispersion, and decay.
Collapse
Affiliation(s)
- Artem Y Panchenko
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Oren Tchaicheeyan
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Igor E Berinskii
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv69978, Israel.,The Center for the Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
4
|
Muresan CG, Sun ZG, Yadav V, Tabatabai AP, Lanier L, Kim JH, Kim T, Murrell MP. F-actin architecture determines constraints on myosin thick filament motion. Nat Commun 2022; 13:7008. [PMID: 36385016 PMCID: PMC9669029 DOI: 10.1038/s41467-022-34715-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Active stresses are generated and transmitted throughout diverse F-actin architectures within the cell cytoskeleton, and drive essential behaviors of the cell, from cell division to migration. However, while the impact of F-actin architecture on the transmission of stress is well studied, the role of architecture on the ab initio generation of stresses remains less understood. Here, we assemble F-actin networks in vitro, whose architectures are varied from branched to bundled through F-actin nucleation via Arp2/3 and the formin mDia1. Within these architectures, we track the motions of embedded myosin thick filaments and connect them to the extent of F-actin network deformation. While mDia1-nucleated networks facilitate the accumulation of stress and drive contractility through enhanced actomyosin sliding, branched networks prevent stress accumulation through the inhibited processivity of thick filaments. The reduction in processivity is due to a decrease in translational and rotational motions constrained by the local density and geometry of F-actin.
Collapse
Affiliation(s)
- Camelia G Muresan
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Zachary Gao Sun
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA
| | - Vikrant Yadav
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - A Pasha Tabatabai
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Laura Lanier
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - June Hyung Kim
- Weldon School of Biomedical Engineering, Purdue University, 206S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206S. Martin Jischke Drive, West Lafayette, IN, 47907, USA
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA.
- Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA.
| |
Collapse
|
5
|
Das D, Acharya P, Ramola K. Long-range correlations in pinned athermal networks. Phys Rev E 2021; 104:014503. [PMID: 34412209 DOI: 10.1103/physreve.104.014503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
We derive exact results for displacement fields that develop as a response to external pinning forces in two-dimensional athermal networks. For a triangular lattice arrangement of particles interacting through soft potentials, we develop a Green's function formalism which we use to derive exact results for displacement fields produced by localized external forces. We show that in the continuum limit the displacement fields decay as 1/r at large distances r away from a force dipole. Finally, we extend our formulation to study correlations in the displacement fields produced by the external pinning forces. We show that uncorrelated pinned forces at each vertex give rise to long-range correlations in displacements in athermal systems, with a nontrivial system size dependence. We verify our predictions with numerical simulations of athermal networks in two dimensions.
Collapse
Affiliation(s)
- Debankur Das
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Pappu Acharya
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Kabir Ramola
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| |
Collapse
|