1
|
Gascoigne L, Tas RP, Moerman PG, Voets IK. Single-lipid tracking reveals heterogeneities in the nanoscale dynamics of colloid-supported lipid bilayers. SOFT MATTER 2025; 21:3058-3066. [PMID: 40163549 PMCID: PMC11957375 DOI: 10.1039/d4sm01299b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/09/2025] [Indexed: 04/02/2025]
Abstract
In this work, we utilize single-particle tracking photoactivated localization microscopy (sptPALM) to explore lipid dynamics in colloid-supported lipid bilayers (CSLBs) with liquid-like (DOPC), gel-like (DPPC), and phase-separated (DOPC:DPPC:cholesterol) membranes. Using total internal reflection fluorescence illumination, we tracked photoactivatable fluorescent dyes conjugated to lipids within these membranes. Analysis of tracked lipids revealed that bilayers across all compositions have heterogeneous dynamics, with lipid mobility varying over three orders of magnitude. We leveraged the temperature-dependent phase behavior of DPPC to transform gel-like membranes at room temperature into liquid-like membranes above 41 °C, which resulted in increased diffusivity and a surprising decrease in heterogeneity. Finally, we perform single lipid tracking in fluid-rich phases within gel-phase regions to demonstrate their dynamics with reduced lipid mobility because of soft confinement within phase-separated microdomains. Our findings have implications for colloidal assembly strategies that exploit ligand mobility to create controlled and reproducible colloidal superstructures.
Collapse
Affiliation(s)
- Levena Gascoigne
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Roderick P Tas
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, 2628CD Delft, The Netherlands
| | - Pepijn G Moerman
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
2
|
Linne C, Heemskerk E, Zwanikken JW, Kraft DJ, Laan L. Optimality and cooperativity in superselective surface binding by multivalent DNA nanostars. SOFT MATTER 2024; 20:8515-8523. [PMID: 39417240 PMCID: PMC11484159 DOI: 10.1039/d4sm00704b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Weak multivalent interactions govern a large variety of biological processes like cell-cell adhesion and virus-host interactions. These systems distinguish sharply between surfaces based on receptor density, known as superselectivity. Present experimental studies typically involve tens or hundreds of interactions, resulting in a high entropic contribution leading to high selectivities. However, if, and if so how, systems with few ligands, such as multi-domain proteins and bacteriophages binding to their host, show superselective behavior is an open question. Here, we address this question with a multivalent experimental model system based on star shaped branched DNA nanostructures (DNA nanostars) with each branch featuring a single stranded overhang that binds to complementary receptors on a target surface. Each DNA nanostar possesses a fluorophore, to directly visualize DNA nanostar surface adsorption by total internal reflection fluorescence microscopy (TIRFM). We observe that DNA nanostars can bind superselectively to surfaces and bind optimally at a valency of three, for a given binding strength and concentration. We explain this optimum by extending the current theory with interactions between DNA nanostar binding sites (ligands). Our results add to the understanding of multivalent interactions, by identifying cooperative mechanisms that lead to optimal selectivity, and providing quantitative values for the relevant parameters. These findings inspire additional design rules which improve future work on selective targeting in directed drug delivery.
Collapse
Affiliation(s)
- Christine Linne
- Department of Bionanoscience, TU Delft, 2629 HZ Delft, The Netherlands.
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, 2300 RA Leiden, The Netherlands.
| | - Eva Heemskerk
- Department of Bionanoscience, TU Delft, 2629 HZ Delft, The Netherlands.
| | - Jos W Zwanikken
- Department of Bionanoscience, TU Delft, 2629 HZ Delft, The Netherlands.
| | - Daniela J Kraft
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, 2300 RA Leiden, The Netherlands.
| | - Liedewij Laan
- Department of Bionanoscience, TU Delft, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
3
|
Rinaldin M, Ten Haaf SLD, Vegter EJ, van der Wel C, Fonda P, Giomi L, Kraft DJ. Lipid membranes supported by polydimethylsiloxane substrates with designed geometry. SOFT MATTER 2024; 20:7379-7386. [PMID: 39046306 DOI: 10.1039/d4sm00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The membrane curvature of cells and intracellular compartments continuously adapts to enable cells to perform vital functions, from cell division to signal trafficking. Understanding how membrane geometry affects these processes in vivo is challenging because of the biochemical and geometrical complexity as well as the short time and small length scales involved in cellular processes. By contrast, in vitro model membranes with engineered curvature would provide a versatile platform for this investigation and applications to biosensing and biocomputing. Here, we present a strategy that allows fabrication of lipid membranes with designed shape by combining 3D micro-printing and replica-molding lithography with polydimethylsiloxane to create curved micrometer-sized scaffolds with virtually any geometry. The resulting supported lipid membranes are homogeneous and fluid. We demonstrate the versatility of the system by fabricating structures of interesting combinations of mean and Gaussian curvature. We study the lateral phase separation and how local curvature influences the effective diffusion coefficient. Overall, we offer a bio-compatible platform for understanding curvature-dependent cellular processes and developing programmable bio-interfaces for living cells and nanostructures.
Collapse
Affiliation(s)
- Melissa Rinaldin
- Leiden Institute of Physics, University of Leiden, 2300 RA Leiden, The Netherlands.
- Instituut-Lorentz, Universiteit Leiden, Leiden, 2300 RA, The Netherlands
| | | | - Ernst J Vegter
- Leiden Institute of Physics, University of Leiden, 2300 RA Leiden, The Netherlands.
| | - Casper van der Wel
- Leiden Institute of Physics, University of Leiden, 2300 RA Leiden, The Netherlands.
| | - Piermarco Fonda
- Instituut-Lorentz, Universiteit Leiden, Leiden, 2300 RA, The Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, Leiden, 2300 RA, The Netherlands
| | - Daniela J Kraft
- Leiden Institute of Physics, University of Leiden, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
4
|
van Kesteren S, Diethelm P, Jung SH, Isa L. DNA-Based Replication of Programmable Colloidal Assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400180. [PMID: 38693098 DOI: 10.1002/smll.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/05/2024] [Indexed: 05/03/2024]
Abstract
Nature uses replication to amplify the information necessary for the intricate structures vital for life. Despite some successes with pure nucleotide structures, constructing synthetic microscale systems capable of replication remains largely out of reach. Here, a functioning strategy is shown for the replication of microscale particle assemblies using DNA-coated colloids. By positioning DNA-functionalized colloids using capillary forces and embedding them into a polymer layer, programmable sequences of patchy particles are created that act as a primer and offer precise binding of complementary particles from suspension. The strings of complementary colloids are cross-linked, released from the primer, and purified via flow cytometric sorting to achieve a purity of up to 81% of the replicated sequences. The replication of strings of up to five colloids and non-linear shapes is demonstrated with particles of different sizes and materials. Furthermore, a pathway for exponential self-replication is outlined, including preliminary data that shows the transfer of patches and binding of a second-generation of assemblies from suspension.
Collapse
Affiliation(s)
- Steven van Kesteren
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Pascal Diethelm
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Se-Hyeong Jung
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
5
|
Melio J, Henkes SE, Kraft DJ. Soft and Stiff Normal Modes in Floppy Colloidal Square Lattices. PHYSICAL REVIEW LETTERS 2024; 132:078202. [PMID: 38427878 DOI: 10.1103/physrevlett.132.078202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/08/2023] [Accepted: 01/03/2024] [Indexed: 03/03/2024]
Abstract
Floppy microscale spring networks are widely studied in theory and simulations, but no well-controlled experimental system currently exists. Here, we show that square lattices consisting of colloid-supported lipid bilayers functionalized with DNA linkers act as microscale floppy spring networks. We extract their normal modes by inverting the particle displacement correlation matrix, showing the emergence of a spectrum of soft modes with low effective stiffness in addition to stiff modes that derive from linker interactions. Evaluation of the softest mode, a uniform shear mode, reveals that shear stiffness decreases with lattice size. Experiments match well with Brownian particle simulations, and we develop a theoretical description based on mapping interactions onto a linear response model to describe the modes. Our results reveal the importance of entropic steric effects and can be used for developing reconfigurable materials at the colloidal length scale.
Collapse
Affiliation(s)
- Julio Melio
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Silke E Henkes
- Lorentz Institute, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| | - Daniela J Kraft
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
6
|
Lu T, Javed S, Bonfio C, Spruijt E. Interfacing Coacervates with Membranes: From Artificial Organelles and Hybrid Protocells to Intracellular Delivery. SMALL METHODS 2023; 7:e2300294. [PMID: 37354057 DOI: 10.1002/smtd.202300294] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Indexed: 06/26/2023]
Abstract
Compartmentalization is crucial for the functioning of cells. Membranes enclose and protect the cell, regulate the transport of molecules entering and exiting the cell, and organize cellular machinery in subcompartments. In addition, membraneless condensates, or coacervates, offer dynamic compartments that act as biomolecular storage centers, organizational hubs, or reaction crucibles. Emerging evidence shows that phase-separated membraneless bodies in the cell are involved in a wide range of functional interactions with cellular membranes, leading to transmembrane signaling, membrane remodeling, intracellular transport, and vesicle formation. Such functional and dynamic interplay between phase-separated droplets and membranes also offers many potential benefits to artificial cells, as shown by recent studies involving coacervates and liposomes. Depending on the relative sizes and interaction strength between coacervates and membranes, coacervates can serve as artificial membraneless organelles inside liposomes, as templates for membrane assembly and hybrid artificial cell formation, as membrane remodelers for tubulation and possibly division, and finally, as cargo containers for transport and delivery of biomolecules across membranes by endocytosis or direct membrane crossing. Here, recent experimental examples of each of these functions are reviewed and the underlying physicochemical principles and possible future applications are discussed.
Collapse
Affiliation(s)
- Tiemei Lu
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Sadaf Javed
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Claudia Bonfio
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, Strasbourg, 67083, France
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
7
|
Shelke Y, Camerin F, Marín-Aguilar S, Verweij RW, Dijkstra M, Kraft DJ. Flexible Colloidal Molecules with Directional Bonds and Controlled Flexibility. ACS NANO 2023. [PMID: 37363931 DOI: 10.1021/acsnano.3c00751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Colloidal molecules are ideal model systems for mimicking real molecules and can serve as versatile building blocks for the bottom-up self-assembly of flexible and smart materials. While most colloidal molecules are rigid objects, the development of colloidal joints has made it possible to endow them with conformational flexibility. However, their unrestricted range of motion does not capture the limited movement and bond directionality that is instead typical of real molecules. In this work, we create flexible colloidal molecules with an in situ controllable motion range and bond directionality by assembling spherical particles onto cubes functionalized with complementary surface-mobile DNA. By varying the sphere-to-cube size ratio, we obtain colloidal molecules with different coordination numbers and find that they feature a constrained range of motion above a critical size ratio. Using theory and simulations, we show that the particle shape together with the multivalent bonds creates an effective free-energy landscape for the motion of the sphere on the surface of the cube. We quantify the confinement of the spheres on the surface of the cube and the probability to change facet. We find that temperature can be used as an extra control parameter to switch in situ between full and constrained flexibility. These flexible colloidal molecules with a temperature switching motion range can be used to investigate the effect of directional yet flexible bonds in determining their self-assembly and phase behavior, and may be employed as constructional units in microrobotics and smart materials.
Collapse
Affiliation(s)
- Yogesh Shelke
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, Leiden 2300 RA, The Netherlands
| | - Fabrizio Camerin
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Susana Marín-Aguilar
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Ruben W Verweij
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, Leiden 2300 RA, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Daniela J Kraft
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, Leiden 2300 RA, The Netherlands
| |
Collapse
|
8
|
Verweij RW, Melio J, Chakraborty I, Kraft DJ. Brownian motion of flexibly linked colloidal rings. Phys Rev E 2023; 107:034602. [PMID: 37072967 DOI: 10.1103/physreve.107.034602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/04/2023] [Indexed: 04/20/2023]
Abstract
Ring, or cyclic, polymers have unique properties compared to linear polymers, due to their topologically closed structure that has no beginning or end. Experimental measurements on the conformation and diffusion of molecular ring polymers simultaneously are challenging due to their inherently small size. Here, we study an experimental model system for cyclic polymers, that consists of rings of flexibly linked micron-sized colloids with n=4-8 segments. We characterize the conformations of these flexible colloidal rings and find that they are freely jointed up to steric restrictions. We measure their diffusive behavior and compare it to hydrodynamic simulations. Interestingly, flexible colloidal rings have a larger translational and rotational diffusion coefficient compared to colloidal chains. In contrast to chains, their internal deformation mode shows slower fluctuations for n≲8 and saturates for higher values of n. We show that constraints stemming from the ring structure cause this decrease in flexibility for small n and infer the expected scaling of the flexibility as function of ring size. Our findings could have implications for the behavior of both synthetic and biological ring polymers, as well as for the dynamic modes of floppy colloidal materials.
Collapse
Affiliation(s)
- Ruben W Verweij
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Julio Melio
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Indrani Chakraborty
- Department of Physics, Birla Institute of Technology and Science, Pilani-K K Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Daniela J Kraft
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
9
|
Valency and affinity control of aptamer-conjugated nanoparticles for selective cancer cell targeting. J Control Release 2023; 355:228-237. [PMID: 36642253 DOI: 10.1016/j.jconrel.2023.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023]
Abstract
Nanoparticles (NPs) are commonly functionalized using targeting ligands to drive their selective uptake in cells of interest. Typical target cell types are cancer cells, which often overexpress distinct surface receptors that can be exploited for NP therapeutics. However, these targeted receptors are also moderately expressed in healthy cells, leading to unwanted off-tumor toxicities. Multivalent interactions between NP ligands and cell receptors have been investigated to increase the targeting selectivity towards cancer cells due to their non-linear response to receptor density. However, to exploit the multivalent effect, multiple variables have to be considered such as NP valency, ligand affinity, and cell receptor density. Here, we synthesize a panel of aptamer-functionalized silica-supported lipid bilayers (SSLB) to study the effect of valency, aptamer affinity, and epidermal growth factor receptor (EGFR) density on targeting specificity and selectivity. We show that there is an evident interplay among those parameters that can be tuned to increase SSLB selectivity towards high-density EGFR cells and reduce accumulation at non-tumor tissues. Specifically, the combination of high-affinity aptamers and low valency SSLBs leads to increased high-EGFR cell selectivity. These insights provide a better understanding of the multivalent interactions of NPs with cells and bring the nanomedicine field a step closer to the rational design of cancer nanotherapeutics.
Collapse
|
10
|
Giakoumatos EC, Gascoigne L, Gumí-Audenis B, García ÁG, Tuinier R, Voets IK. Impact of poly(ethylene glycol) functionalized lipids on ordering and fluidity of colloid supported lipid bilayers. SOFT MATTER 2022; 18:7569-7578. [PMID: 36165127 PMCID: PMC9555145 DOI: 10.1039/d2sm00806h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Colloid supported lipid bilayers (CSLBs) are highly appealing building blocks for functional colloids. In this contribution, we critically evaluate the impact on lipid ordering and CSLB fluidity of inserted additives. We focus on poly(ethylene glycol) (PEG) bearing lipids, which are commonly introduced to promote colloidal stability. We investigate whether their effect on the CSLB is related to the incorporated amount and chemical nature of the lipid anchor. To this end, CSLBs were prepared from lipids with a low or high melting temperature (Tm), DOPC, and DPPC, respectively. Samples were supplemented with either 0, 5 or 10 mol% of either a low or high Tm PEGylated lipid, DOPE-PEG2000 or DSPE-PEG2000, respectively. Lipid ordering was probed via differential scanning calorimetry and fluidity by fluorescence recovery after photobleaching. We find that up to 5 mol% of either PEGylated lipids could be incorporated into both membranes without any pronounced effects. However, the fluorescence recovery of the liquid-like DOPC membrane was markedly decelerated upon incorporating 10 mol% of either PEGylated lipids, whilst insertion of the anchoring lipids (DOPE and DSPE without PEG2000) had no detectable impact. Therefore, we conclude that the amount of incorporated PEG stabilizer, not the chemical nature of the lipid anchor, should be tuned carefully to achieve sufficient colloidal stability without compromising the membrane dynamics. These findings offer guidance for the experimental design of studies using CSLBs, such as those focusing on the consequences of intra- and inter-particle inhomogeneities for multivalent binding and the impact of additive mobility on superselectivity.
Collapse
Affiliation(s)
- Emma C Giakoumatos
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Levena Gascoigne
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Berta Gumí-Audenis
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Álvaro González García
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Remco Tuinier
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilja K Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
11
|
Moud AA. Fluorescence Recovery after Photobleaching in Colloidal Science: Introduction and Application. ACS Biomater Sci Eng 2022; 8:1028-1048. [PMID: 35201752 DOI: 10.1021/acsbiomaterials.1c01422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
FRAP (fluorescence recovery after photo bleaching) is a method for determining diffusion in material science. In industrial applications such as medications, foods, Medtech, hygiene, and textiles, the diffusion process has a substantial influence on the overall qualities of goods. All these complex and heterogeneous systems have diffusion-based processes at the local level. FRAP is a fluorescence-based approach for detecting diffusion; in this method, a high-intensity laser is made for a brief period and then applied to the samples, bleaching the fluorescent chemical inside the region, which is subsequently filled up by natural diffusion. This brief Review will focus on the existing research on employing FRAP to measure colloidal system heterogeneity and explore diffusion into complicated structures. This description of FRAP will be followed by a discussion of how FRAP is intended to be used in colloidal science. When constructing the current Review, the most recent publications were reviewed for this assessment. Because of the large number of FRAP articles in colloidal research, there is currently a dearth of knowledge regarding the growth of FRAP's significance to colloidal science. Colloids make up only 2% of FRAP papers, according to ISI Web of Knowledge.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
12
|
Kumar M, Singh A, Del Secco B, Baranov MV, van den Bogaart G, Sacanna S, Thutupalli S. Assembling anisotropic colloids using curvature-mediated lipid sorting. SOFT MATTER 2022; 18:1757-1766. [PMID: 35072193 DOI: 10.1039/d1sm01517f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The use of colloid supported lipid bilayers (CSLBs) for assembling colloidal structures has been of recent interest. Here, we use multi-component lipid bilayer membranes formed around anisotropic colloids and show that the curvature anisotropy of the colloids drives a sorting of the lipids in the membrane along the colloids. We then exploit this curvature-sensitive lipid sorting to create "shape-anisotropic patchy colloids" - specifically, we use colloids with six rods sticking out of a central cubic core, "hexapods", for this purpose and demonstrate that membrane patches self-assemble at the tip of each of the six colloidal rods. The membrane patches are rendered sticky using biotinylated lipids in complement with a biotin-binding streptavidin protein. Finally, using these "shape-anisotropic patchy colloids", we demonstrate the directed assembly of colloidal links, paving the way for the creation of heterogeneous and flexible colloidal structures.
Collapse
Affiliation(s)
- Manoj Kumar
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| | - Anupam Singh
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
| | - Benedetta Del Secco
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, USA
| | - Maksim V Baranov
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Geert van den Bogaart
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | - Stefano Sacanna
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, USA
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
13
|
Chakraborty I, Pearce DJG, Verweij RW, Matysik SC, Giomi L, Kraft DJ. Self-Assembly Dynamics of Reconfigurable Colloidal Molecules. ACS NANO 2022; 16:2471-2480. [PMID: 35080387 PMCID: PMC8867909 DOI: 10.1021/acsnano.1c09088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Colloidal molecules are designed to mimic their molecular analogues through their anisotropic shape and interactions. However, current experimental realizations are missing the structural flexibility present in real molecules thereby restricting their use as model systems. We overcome this limitation by assembling reconfigurable colloidal molecules from silica particles functionalized with mobile DNA linkers in high yields. We achieve this by steering the self-assembly pathway toward the formation of finite-sized clusters by employing high number ratios of particles functionalized with complementary DNA strands. The size ratio of the two species of particles provides control over the overall cluster size, i.e., the number of bound particles N, as well as the degree of reconfigurability. The bond flexibility provided by the mobile linkers allows the successful assembly of colloidal clusters with the geometrically expected maximum number of bound particles and shape. We quantitatively examine the self-assembly dynamics of these flexible colloidal molecules by a combination of experiments, agent-based simulations, and an analytical model. Our "flexible colloidal molecules" are exciting building blocks for investigating and exploiting the self-assembly of complex hierarchical structures, photonic crystals, and colloidal metamaterials.
Collapse
Affiliation(s)
- Indrani Chakraborty
- Soft
Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, PO Box 9504, 2300 RA Leiden, The Netherlands
- Department
of Physics, Birla Institute of Technology
and Science, Pilani -
K K Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Daniel J. G. Pearce
- Institute-Lorentz, Universiteit Leiden, PO Box 9506, 2300 RA Leiden, The Netherlands
- Department
of Mathematics, Massachusetts Institute
of Technology, 182 Memorial
Drive, Cambridge, Massachusetts 02142, United States
- Department
of Theoretical Physics, University of Geneva, Quai Ernest Ansermet 30, 1205 Geneva, Switzerland
| | - Ruben W. Verweij
- Soft
Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, PO Box 9504, 2300 RA Leiden, The Netherlands
| | - Sabine C. Matysik
- Soft
Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, PO Box 9504, 2300 RA Leiden, The Netherlands
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Luca Giomi
- Institute-Lorentz, Universiteit Leiden, PO Box 9506, 2300 RA Leiden, The Netherlands
| | - Daniela J. Kraft
- Soft
Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, PO Box 9504, 2300 RA Leiden, The Netherlands
| |
Collapse
|
14
|
DNA self-organization controls valence in programmable colloid design. Proc Natl Acad Sci U S A 2021; 118:2112604118. [PMID: 34750268 DOI: 10.1073/pnas.2112604118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
Just like atoms combine into molecules, colloids can self-organize into predetermined structures according to a set of design principles. Controlling valence-the number of interparticle bonds-is a prerequisite for the assembly of complex architectures. The assembly can be directed via solid "patchy" particles with prescribed geometries to make, for example, a colloidal diamond. We demonstrate here that the nanoscale ordering of individual molecular linkers can combine to program the structure of microscale assemblies. Specifically, we experimentally show that covering initially isotropic microdroplets with N mobile DNA linkers results in spontaneous and reversible self-organization of the DNA into Z(N) binding patches, selecting a predictable valence. We understand this valence thermodynamically, deriving a free energy functional for droplet-droplet adhesion that accurately predicts the equilibrium size of and molecular organization within patches, as well as the observed valence transitions with N Thus, microscopic self-organization can be programmed by choosing the molecular properties and concentration of binders. These results are widely applicable to the assembly of any particle with mobile linkers, such as functionalized liposomes or protein interactions in cell-cell adhesion.
Collapse
|
15
|
Linne C, Visco D, Angioletti-Uberti S, Laan L, Kraft DJ. Direct visualization of superselective colloid-surface binding mediated by multivalent interactions. Proc Natl Acad Sci U S A 2021; 118:e2106036118. [PMID: 34465623 PMCID: PMC8433554 DOI: 10.1073/pnas.2106036118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reliably distinguishing between cells based on minute differences in receptor density is crucial for cell-cell or virus-cell recognition, the initiation of signal transduction, and selective targeting in directed drug delivery. Such sharp differentiation between different surfaces based on their receptor density can only be achieved by multivalent interactions. Several theoretical and experimental works have contributed to our understanding of this "superselectivity." However, a versatile, controlled experimental model system that allows quantitative measurements on the ligand-receptor level is still missing. Here, we present a multivalent model system based on colloidal particles equipped with surface-mobile DNA linkers that can superselectively target a surface functionalized with the complementary mobile DNA-linkers. Using a combined approach of light microscopy and Foerster resonance energy transfer (FRET), we can directly observe the binding and recruitment of the ligand-receptor pairs in the contact area. We find a nonlinear transition in colloid-surface binding probability with increasing ligand or receptor concentration. In addition, we observe an increased sensitivity with weaker ligand-receptor interactions, and we confirm that the timescale of binding reversibility of individual linkers has a strong influence on superselectivity. These unprecedented insights on the ligand-receptor level provide dynamic information into the multivalent interaction between two fluidic membranes mediated by both mobile receptors and ligands and will enable future work on the role of spatial-temporal ligand-receptor dynamics on colloid-surface binding.
Collapse
Affiliation(s)
- Christine Linne
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, 2300 RA Leiden, The Netherlands
- Department of Bionanoscience, Technical University Delft, 2629 HZ Delft, The Netherlands
| | - Daniele Visco
- Department of Materials, Imperial College London, SW72AZ London, United Kingdom
- Thomas Young Centre, Imperial College London, SW72AZ London, United Kingdom
| | - Stefano Angioletti-Uberti
- Department of Materials, Imperial College London, SW72AZ London, United Kingdom
- Thomas Young Centre, Imperial College London, SW72AZ London, United Kingdom
| | - Liedewij Laan
- Department of Bionanoscience, Technical University Delft, 2629 HZ Delft, The Netherlands;
| | - Daniela J Kraft
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, 2300 RA Leiden, The Netherlands;
| |
Collapse
|
16
|
Fonda P, Al-Izzi SC, Giomi L, Turner MS. Measuring Gaussian Rigidity Using Curved Substrates. PHYSICAL REVIEW LETTERS 2020; 125:188002. [PMID: 33196252 DOI: 10.1103/physrevlett.125.188002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The Gaussian (saddle splay) rigidity of fluid membranes controls their equilibrium topology but is notoriously difficult to measure. In lipid mixtures, typical of living cells, linear interfaces separate liquid ordered (LO) from liquid disordered (LD) bilayer phases at subcritical temperatures. Here, we consider such membranes supported by curved substrates that thereby control the membrane curvatures. We show how spectral analysis of the fluctuations of the LO-LD interface provides a novel way of measuring the difference in Gaussian rigidity between the two phases. We provide a number of conditions for such interface fluctuations to be both experimentally measurable and sufficiently sensitive to the value of the Gaussian rigidity, while remaining in the perturbative regime of our analysis.
Collapse
Affiliation(s)
- Piermarco Fonda
- Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Sami C Al-Izzi
- School of Physics & EMBL-Australia node in Single Molecule Science, University of New South Wales, 2052 Sydney, Australia
- Department of Mathematics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Institut Curie, PSL Research University, CNRS, Physical Chemistry Curie, F-75005, Paris, France
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, Netherlands
| | - Matthew S Turner
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Chemical Engineering, University of Kyoto, Kyoto 615-8510, Japan
| |
Collapse
|
17
|
Rinaldin M, Fonda P, Giomi L, Kraft DJ. Geometric pinning and antimixing in scaffolded lipid vesicles. Nat Commun 2020; 11:4314. [PMID: 32887878 PMCID: PMC7474073 DOI: 10.1038/s41467-020-17432-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/01/2020] [Indexed: 11/18/2022] Open
Abstract
Previous studies on the phase behaviour of multicomponent lipid bilayers found an intricate interplay between membrane geometry and its composition, but a fundamental understanding of curvature-induced effects remains elusive. Thanks to a combination of experiments on lipid vesicles supported by colloidal scaffolds and theoretical work, we demonstrate that the local geometry and global chemical composition of the bilayer determine both the spatial arrangement and the amount of mixing of the lipids. In the mixed phase, a strong geometrical anisotropy can give rise to an antimixed state, where the lipids are mixed, but their relative concentration varies across the membrane. After phase separation, the bilayer organizes in multiple lipid domains, whose location is pinned in specific regions, depending on the substrate curvature and the bending rigidity of the lipid domains. Our results provide critical insights into the phase separation of cellular membranes and, more generally, two-dimensional fluids on curved substrates.
Collapse
Affiliation(s)
- Melissa Rinaldin
- Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, Leiden, 2300 RA, The Netherlands
- Instituut-Lorentz, Universiteit Leiden, Leiden, 2300 RA, The Netherlands
- Martin A. Fischer School of Physics, Brandeis University, Waltham, MA, 02453, USA
| | - Piermarco Fonda
- Instituut-Lorentz, Universiteit Leiden, Leiden, 2300 RA, The Netherlands
- Max Planck Institute of Colloids and Interfaces, Potsdam, 14476, Germany
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, Leiden, 2300 RA, The Netherlands.
| | - Daniela J Kraft
- Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, Leiden, 2300 RA, The Netherlands.
| |
Collapse
|
18
|
Jana PK, Mognetti BM. Self-assembly of finite-sized colloidal aggregates. SOFT MATTER 2020; 16:5915-5924. [PMID: 32538404 DOI: 10.1039/d0sm00234h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of the challenges of self-assembling finite-sized colloidal aggregates with a sought morphology is the necessity of precisely sorting the position of the colloids at the microscopic scale to avoid the formation of off-target structures. Microfluidic platforms address this problem by loading into single droplets the exact amount of colloids entering the targeted aggregate. Using theory and simulations, in this paper, we validate a more versatile design allowing us to fabricate different types of finite-sized aggregates, including colloidal molecules or core-shell clusters, starting from finite density suspensions of isotropic colloids in bulk. In our model, interactions between particles are mediated by DNA linkers with mobile tethering points, as found in experiments using DNA oligomers tagged with hydrophobic complexes immersed into supported bilayers. By fine-tuning the strength and number of the different types of linkers, we prove the possibility of controlling the morphology of the aggregates, in particular, the valency of the molecules and the size of the core-shell clusters. In general, our design shows how multivalent interactions can lead to microphase separation under equilibrium conditions.
Collapse
Affiliation(s)
- Pritam Kumar Jana
- Université Libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Campus Plaine, CP 231, Blvd. du Triomphe, B-1050 Brussels, Belgium.
| | | |
Collapse
|
19
|
Rinaldin M, Fonda P, Giomi L, Kraft DJ. Lipid exchange enhances geometric pinning in multicomponent membranes on patterned substrates. SOFT MATTER 2020; 16:4932-4940. [PMID: 32435786 DOI: 10.1039/c9sm02393c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Experiments on supported lipid bilayers featuring liquid ordered/disordered domains have shown that the spatial arrangement of the lipid domains and their chemical composition are strongly affected by the curvature of the substrate. Furthermore, theoretical predictions suggest that both these effects are intimately related with the closed topology of the bilayer. In this work, we test this hypothesis by fabricating supported membranes consisting of colloidal particles of various shapes lying on a flat substrate. A single lipid bilayer coats both colloids and substrate, allowing local lipid exchange between them, thus rendering the system thermodynamically open, i.e. able to exchange heat and molecules with an external reservoir in the neighborhood of the colloid. By reconstructing the Gibbs phase diagram for this system, we demonstrate that the free-energy landscape is directly influenced by the geometry of the colloid. In addition, we find that local lipid exchange enhances the pinning of the liquid disordered phase in highly curved regions. This allows us to provide estimates of the bending moduli difference of the domains. Finally, by combining experimental and numerical data, we forecast the outcome of possible experiments on catenoidal and conical necks and show that these geometries could greatly improve the precision of the current estimates of the bending moduli.
Collapse
Affiliation(s)
- Melissa Rinaldin
- Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Mognetti BM, Cicuta P, Di Michele L. Programmable interactions with biomimetic DNA linkers at fluid membranes and interfaces. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:116601. [PMID: 31370052 DOI: 10.1088/1361-6633/ab37ca] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
At the heart of the structured architecture and complex dynamics of biological systems are specific and timely interactions operated by biomolecules. In many instances, biomolecular agents are spatially confined to flexible lipid membranes where, among other functions, they control cell adhesion, motility and tissue formation. Besides being central to several biological processes, multivalent interactions mediated by reactive linkers confined to deformable substrates underpin the design of synthetic-biological platforms and advanced biomimetic materials. Here we review recent advances on the experimental study and theoretical modelling of a heterogeneous class of biomimetic systems in which synthetic linkers mediate multivalent interactions between fluid and deformable colloidal units, including lipid vesicles and emulsion droplets. Linkers are often prepared from synthetic DNA nanostructures, enabling full programmability of the thermodynamic and kinetic properties of their mutual interactions. The coupling of the statistical effects of multivalent interactions with substrate fluidity and deformability gives rise to a rich emerging phenomenology that, in the context of self-assembled soft materials, has been shown to produce exotic phase behaviour, stimuli-responsiveness, and kinetic programmability of the self-assembly process. Applications to (synthetic) biology will also be reviewed.
Collapse
Affiliation(s)
- Bortolo Matteo Mognetti
- Université libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Campus Plaine, CP 231, Blvd. du Triomphe, B-1050 Brussels, Belgium
| | | | | |
Collapse
|
21
|
Jana PK, Mognetti BM. Surface-triggered cascade reactions between DNA linkers direct the self-assembly of colloidal crystals of controllable thickness. NANOSCALE 2019; 11:5450-5459. [PMID: 30855619 DOI: 10.1039/c8nr10217a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Functionalizing colloids with reactive DNA linkers is a versatile way of programming self-assembly. DNA selectivity provides direct control over colloid-colloid interactions allowing the engineering of structures such as complex crystals or gels. However, the self-assembly of localized and finite structures remains an open problem with many potential applications. In this work, we present a system in which functionalized surfaces initiate a cascade reaction between linkers leading to the self-assembly of crystals with a controllable number of layers. Specifically, we consider colloidal particles functionalized by two families of complementary DNA linkers with mobile anchoring points, as found in experiments using emulsions or lipid bilayers. In bulk, intra-particle linkages formed by pairs of complementary linkers prevent the formation of inter-particle bridges and therefore colloid-colloid aggregation. However, colloids interact strongly with the surface given that the latter can destabilize intra-particle linkages. When in direct contact with the surface, colloids are activated, meaning that they feature more unpaired DNA linkers ready to react. Activated colloids can then capture and activate other colloids from the bulk through the formation of inter-particle linkages. Using simulations and theory, validated by existing experiments, we clarify the thermodynamics of the activation and binding process and explain how particle-particle interactions, within the adsorbed phase, weaken as a function of the distance from the surface. The latter observation underlies the possibility of self-assembling finite aggregates with controllable thickness and flat solid-gas interfaces. Our design suggests a new avenue to fabricate heterogeneous and finite structures.
Collapse
Affiliation(s)
- Pritam Kumar Jana
- Université Libre de Bruxelles (ULB), Interdisciplinary Center for Nonlinear Phenomena and Complex Systems, Campus Plaine, CP 231, Blvd. du Triomphe, B-1050 Brussels, Belgium.
| | | |
Collapse
|