1
|
Gui R, Jin H. Organic fluorophores-based molecular probes with dual-fluorescence ratiometric responses to in-vitro/in-vivo pH for biosensing, bioimaging and biotherapeutics applications. Talanta 2024; 275:126171. [PMID: 38703479 DOI: 10.1016/j.talanta.2024.126171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
In recent years, organic fluorophores-based molecular probes with dual-fluorescence ratiometric responses to in-vitro/in-vivo pH (DFR-MPs-pH) have been attracting much interest in fundamental application research fields. More and more scientific publications have reported the exploration of various DFR-MPs-pH systems that have unique dual-fluorescence ratiometry as the signal output, in-built and signal self-calibration functions to improve precise detection of targets. DFR-MPs-pH systems possess high-performance applications in biosensing, bioimaging and biomedicine fields. This review has comprehensively summarized recent advances of DFR-MPs-pH for the first time. First of all, the compositions and types of DFR-MPs-pH are introduced by summarizing different organic fluorophores-based molecule systems. Then, construction strategies are analyzed based on specific components, structures, properties and functions of DFR-MPs-pH. Afterward, biosensing and bioimaging applications are discussed in detail, primarily referring to pH sensing and imaging detection at the levels of living cells and small animals. Finally, biomedicine applications are fully summarized, majorly involving bio-toxicity evaluation, bio-distribution, biomedical diagnosis and therapeutics. Meanwhile, the current status, challenges and perspectives are rationally commented after detailed discussions of representative and state-of-the-art studies. Overall, this present review is comprehensive, in-time and in-depth, and can facilitate the following further exploration of new and versatile DFR-MPs-pH systems toward rational design, facile preparation, superior properties, adjustable functions and highly efficient applications in promising fields.
Collapse
Affiliation(s)
- Rijun Gui
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, PR China.
| | - Hui Jin
- College of Chemistry and Chemical Engineering, Intellectual Property Research Institute, Qingdao University, Shandong, 266071, PR China
| |
Collapse
|
2
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
3
|
Yu L, Xie M, Chen M, Yang H, Chen L, Xing P, Tian Z, Wang C. An ortho-activation strategy to develop NIR fluorescent probe for rapid imaging of biothiols in vivo. Talanta 2024; 266:125110. [PMID: 37633039 DOI: 10.1016/j.talanta.2023.125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Biothiols are the main antioxidants in regulating the redox balance and resisting oxidative stress in various biological processes, but the long detection time of current fluorescent probes hinders their rapid imaging in vitro and in vivo. To reveal the influx of biothiols, we rationally develop an ortho-activation approach to accelerate the reaction between the probe and biothiols, by introducing electron-withdrawing fluorine atom into the ortho-site of the phenolic hydroxyl group in the NIR probe to generate an ortho-inductive effect. The ortho-fluorine helps to increase the chemical reactivity of the molecular structure, resulting in a significantly shorter detection time (within 5 min) as compared to previous reports (> 20 min for acrylates-based probes in aqueous solution). Based on this approach, our near-infrared probe 2F-RBX can sensitively and efficiently detect endogenous biothiols in living HepG2 cells and in vivo. These data suggest that ortho-activation is a simple and flexible approach to construct sensitive fluorescent probes for rapid imaging of biothiols, and perhaps other molecules in future, under biological circumstances.
Collapse
Affiliation(s)
- Lu Yu
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Mingli Xie
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Min Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Huiru Yang
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Liang Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China
| | - Panfei Xing
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| | - Zhiyong Tian
- School of Pharmacy, Henan University, Kaifeng, 475004, China.
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
4
|
Munan S, Yadav R, Pareek N, Samanta A. Ratiometric fluorescent probes for pH mapping in cellular organelles. Analyst 2023; 148:4242-4262. [PMID: 37581493 DOI: 10.1039/d3an00960b] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The intracellular pH (pHi) in organelles, including mitochondria, endoplasmic reticulum, lysosomes, and nuclei, differs from the cytoplasmic pH, and thus maintaining the pH of these organelles is crucial for cellular homeostasis. Alterations in the intracellular pH (ΔpHi) in organelles lead to the disruption of cell proliferation, ion transportation, cellular homeostasis, and even cell death. Hence, accurately mapping the pH of organelles is crucial. Accordingly, the development of fluorescence imaging probes for targeting specific organelles and monitoring their dynamics at the molecular level has become the forefront of research in the last three decades. Among them, ratiometric fluorescent probes minimize the interference from the excitation wavelength of light, auto-fluorescence from probe concentration, environmental fluctuations, and instrument sensitivity through self-correction compared to monochromatic fluorescent probes, which are known as turn-on/off fluorescent probes. Small-molecular ratiometric fluorescent probes for detecting ΔpHi are challenging yet demanding. To date, sixty-two ratiometric pH probes have been reported for monitoring internal pH alterations in cellular organelles. However, a critical review on organelle-specific ratiometric probes for pH mapping is still lacking. Thus, in the present review, we report the most recent advances in ratiometric pH probes and the previous data on the role of mapping the ΔpHi of cellular organelles. The development strategy, including ratiometric fluorescence with one reference signal (RFRS) and ratiometric fluorescence with two reversible signals (RFRvS), is systematically illustrated. Finally, we emphasize the major challenges in developing ratiometric probes that merit further research in the future.
Collapse
Affiliation(s)
- Subrata Munan
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| | - Rashmi Yadav
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| | - Niharika Pareek
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institute of Eminence Deemed to be University, NH 91, Tehsil Dadri, Uttar Pradesh, India 201314.
| |
Collapse
|
5
|
Zhang J, Wang K, Sun Y. A Simple Schiff Base Probe for Quintuplicate-Metal Analytes with Four Emission-Wavelength Responses. Molecules 2023; 28:6400. [PMID: 37687230 PMCID: PMC10490265 DOI: 10.3390/molecules28176400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
A versatile mono-Schiff compound consisting of o-aminobenzene-hydroxyjulolidine (ABJ-MS) has been easily synthesized using a one-step reaction. ABJ-MS displays four diverse fluorescence responses to the addition of Zn2+/Al3+/Fe3+/Ag+, with the maximum fluorescence emission at 530 nm undergoing a hypsochromic shift to 502/490/440/430 nm, synchronously with the discriminating fluorescence enhancement being 10.6/22.8/2.6/7.1-fold, respectively. However, the addition of Cu2+ into ABJ-MS leads to an opposite behavior, namely, fluorescence quenching. Meanwhile, ABJ-MS also displays distinct absorption changes after adding these five metal ions due to different binding affinities between them and ABJ-MS, which gives ABJ-MS quite a versatile detecting nature for Cu2+/Zn2+/Al3+/Fe3+/Ag+. Moreover, ABJ-MS can mimic a series of versatile AND/OR/INH-consisting logic circuits on the basis of the Cu2+/Zn2+/Al3+/Fe3+/Ag+-mediated diverse optical responses. These will endow the smart ABJ-MS molecule and potential applications in the multi-analysis chemosensory and molecular logic material fields.
Collapse
Affiliation(s)
- Jingzhe Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaili Wang
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
- State Environmental Protection Engineering (Beijing) Center for Industrial Wastewater Pollution Control, Beijing 100037, China
| | - Yilu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Xu J, Huang M, Jiao L, Pang H, Wang X, Duan R, Wu Q. Supramolecular Dimer as High-Performance pH Probe: Study on the Fluorescence Properties of Halogenated Ligands in Rigid Schiff Base Complex. Int J Mol Sci 2023; 24:ijms24119480. [PMID: 37298432 DOI: 10.3390/ijms24119480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The development of high-performance fluorescence probes has been an active area of research. In the present work, two new pH sensors Zn-3,5-Cl-saldmpn and Zn-3,5-Br-saldmpn based on a halogenated Schiff ligand (3,5-Cl-saldmpn = N, N'-(3,3'-dipropyhnethylamine) bis (3,5-chlorosalicylidene)) with linearity and a high signal-to-noise ratio were developed. Analyses revealed an exponential intensification in their fluorescence emission and a discernible chromatic shift upon pH increase from 5.0 to 7.0. The sensors could retain over 95% of their initial signal amplitude after 20 operational cycles, demonstrating excellent stability and reversibility. To elucidate their unique fluorescence response, a non-halogenated analog was introduced for comparison. The structural and optical characterization suggested that the introduction of halogen atoms can create additional interaction pathways between adjacent molecules and enhance the strength of the interaction, which not only improves the signal-to-noise ratio but also forms a long-range interaction process in the formation of the aggregation state, thus enhancing the response range. Meanwhile, the above proposed mechanism was also verified by theoretical calculations.
Collapse
Affiliation(s)
- Jiajun Xu
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, China
| | - Meifen Huang
- College of Physics Science and Technology, Kunming University, Kunming 650214, China
| | - Liang Jiao
- College of Physics Science and Technology, Kunming University, Kunming 650214, China
| | - Haijun Pang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Xia Wang
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, China
| | - Rui Duan
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, China
| | - Qiong Wu
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, China
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Device, School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|
7
|
Sheng W, Guo X, Tang B, Bu W, Zhang F, Hao E, Jiao L. Hybridization of triphenylamine to BODIPY dyes at the 3,5,8-positions: A facile strategy to construct near infra-red aggregation-induced emission luminogens with intramolecular charge transfer for cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121902. [PMID: 36208580 DOI: 10.1016/j.saa.2022.121902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
A series of five BODIPY derivatives with triarylamine (TPA) moieties on their 3-, 5-, or 8-positions were reported, which showed wide-range fluorescence emissions across red and near infrared regions in their aggregation states. The influences of numbers and substituted positions of TPA groups on the optical and aggregation-induced emission (AIE) properties of these BODIPYs as well as organelle-specific imaging in live cells were investigated. The TPA groups installed at 3-/5-positions of BODIPY could effectively enlarge the conjugated system and red-shift the absorption and emission bands (λemmax up to 815 nm). In contrast, the TPA group linked to 8-position of BODIPY core has little contribution to decrease the HOMO-LUMO energy gap. Importantly, regardless the substitution positions of TPA groups, all these TPA-substituted BODIPYs (BTs) showed remarkable AIE performance and possessed high molar extinction absorption (up to ∼ 63000 M-1 cm-1), two-photon absorption (up to 171 GM at 870 nm), and large Stokes shifts. The BODIPY with one TPA group (BT1 and FBT1) showed lipid droplets-specific localization while BODIPY with two and three TPA groups (BT2, BT3 and FBT2) preferred to enrich in lysosomes. These BODIPYs all have been successfully used in tracking the dynamic behaviors of lipid droplets or lysosomes in living cells. Furthermore, BT1 and FBT1 can quantitatively detect the overexpression of lipid droplets, and BT3 has been successfully used to observe lysosomes behaviors of lipophagy process in living cells. This work systematically studied the influence of the number and position of TPA units on the optical properties and AIE-activities of BODIPYs, which not only enriched the BODIPY-based AIE NIR probes for organelle-specific imaging in live cells, but also provided a practical strategy for the effective construction of organic dyes with NIR AIE activity.
Collapse
Affiliation(s)
- Wanle Sheng
- Department of Chemistry, BengBu Medical College, Bengbu 233030, China.
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Bing Tang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Weibin Bu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Fan Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
8
|
Zhang Y, Li G, Li J, Wu M, Liu X, Liu J. A novel BODIPY-based nano-photosensitizer with aggregation-induced emission for cancer photodynamic therapy. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2022; 15. [DOI: 10.1142/s1793545822400090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The discovery of aggregation-induced emission (AIE) effect provides opportunities for the rapid development of fluorescence imaging-guided photodynamic therapy (PDT). In this work, a boron dipyrromethene (BODIPY)-based photosensitizer (ET-BDP-O) with AIE characteristics was developed, in which the two linear arms of BODIPY group were linked with triphenylamine to form an electron Donor–Acceptor–Donor (D–A–D) architecture while side chain was equipped with triethylene glycol group. ET-BDP-O was able to directly self-assemble into nanoparticles (NPs) without supplement of any other matrices or stabilizers due to its amphiphilic property. The as-prepared ET-BDP-O NPs had an excellent colloid stability with the size of 125 nm. Benefiting from the AIE property, ET-BDP-O NPs could generate strong fluorescence and reactive oxygen species under light-emitting diode light irradiation (60[Formula: see text]mW/cm[Formula: see text]. After internalized in cancer cells, ET-BDP-O NPs were able to emit bright red fluorescence signal for bioimaging. In addition, the cell viability assay demonstrated that the ET-BDP-O NPs exhibited excellent photo-cytotoxicity against cancer cells, while negligible cytotoxicity under dark environment. Thus, ET-BDP-O NPs might be regarded as a promising photosensitizer for fluorescence imaging-guided PDT in future.
Collapse
Affiliation(s)
- Yuting Zhang
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Guojing Li
- Key Laboratory for Green Chemical Process of the Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jiong Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Jingfeng Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fuzhou 350014, P. R. China
| |
Collapse
|
9
|
A pyrene-derived ratiometric fluorescent probe for pH monitoring in cells and zebrafish based on monomer-excimer emission. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Banik D, Manna SK, Maiti A, Mahapatra AK. Recent Advancements in Colorimetric and Fluorescent pH Chemosensors: From Design Principles to Applications. Crit Rev Anal Chem 2022; 53:1313-1373. [PMID: 35086371 DOI: 10.1080/10408347.2021.2023002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Due to the immense biological significance of pH in diverse living systems, the design, synthesis, and development of pH chemosensors for pH monitoring has been a very active research field in recent times. In this review, we summarize the designing strategies, sensing mechanisms, biological and environmental applications of fluorogenic and chromogenic pH chemosensors of the last three years (2018-2020). We categorized these pH probes into seven types based on their applications, including 1) Cancer cell discriminating pH probes; 2) Lysosome targetable pH probes; 3) Mitochondria targetable pH probes; 4) Golgi body targetable pH probes; 5) Endoplasmic reticulum targetable pH probes; 6) pH probes used in nonspecific cell imaging; and 7) pH probes without cell imaging. All these different categories exhibit diverse applications of pH probes in biological and environmental fields.
Collapse
Affiliation(s)
- Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Purba Medinipur, West Bengal, India
| | - Anwesha Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
11
|
Lai Y, Chen X, Chen F, Ni L, Wang T, Zhu Z, Man J, Jiang C, Xie Z. A Lysosome-Targeted Far-Red to Near-Infrared Fluorescent Probe for Monitoring Viscosity Change During the Ferroptosis Process. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Wen Y, Jing N, Huo F, Yin C. Recent progress of organic small molecule-based fluorescent probes for intracellular pH sensing. Analyst 2021; 146:7450-7463. [PMID: 34788777 DOI: 10.1039/d1an01621k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fluorescent probes along with fluorescence microscopy are essential tools for biomedical research. Various cellular ubiquitous chemical factors such as pH, H2O2, and Ca2+ are labeled and traced using specific fluorescent probes, therefore helping us to explore their physiological function and pathological change. Among them, intracellular pH value is an important factor that governs biological processes, generally ∼7.2. Furthermore, specific organelles within cells possess unique acid-base homeostasis, involving the acidic lysosomes, alkalescent mitochondria, and neutral endoplasmic reticulum and Golgi apparatus, which undergo various physiological processes such as intracellular digestion, ATP production, and protein folding and processing. In this review, recently reported fluorescent probes targeted toward the lysosomes, mitochondria, endoplasmic reticulum, Golgi apparatus, and cytoplasm for sensing pH change are discussed, which involves molecular structures, fluorescence behavior, and biological applications.
Collapse
Affiliation(s)
- Ying Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Ning Jing
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, P. R. China
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
13
|
Martynov VI, Pakhomov AA. BODIPY derivatives as fluorescent reporters of molecular activities in living cells. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Fluorescent compounds have become indispensable tools for imaging molecular activities in the living cell. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is currently one of the most popular fluorescent reporters due to its unique photophysical properties. This review provides a general survey and presents a summary of recent advances in the development of new BODIPY-based cellular biomarkers and biosensors. The review starts with the consideration of the properties of BODIPY derivatives required for their application as cellular reporters. Then review provides examples of the design of sensors for different biologically important molecules, ions, membrane potential, temperature and viscosity defining the live cell status. Special attention is payed to BODPY-based phototransformable reporters.
The bibliography includes 339 references.
Collapse
|
14
|
Yin J, Huang L, Wu L, Li J, James TD, Lin W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem Soc Rev 2021; 50:12098-12150. [PMID: 34550134 DOI: 10.1039/d1cs00645b] [Citation(s) in RCA: 242] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment (local environment), including viscosity, temperature, polarity, hypoxia, and acidic-basic status (pH), plays indispensable roles in cellular processes. Significantly, organelles require an appropriate microenvironment to perform their specific physiological functions, and disruption of the microenvironmental homeostasis could lead to malfunctions of organelles, resulting in disorder and disease development. Consequently, monitoring the microenvironment within specific organelles is vital to understand organelle-related physiopathology. Over the past few years, many fluorescent probes have been developed to help reveal variations in the microenvironment within specific cellular regions. Given that a comprehensive understanding of the microenvironment in a particular cellular region is of great significance for further exploration of life events, a thorough summary of this topic is urgently required. However, there has not been a comprehensive and critical review published recently on small-molecule fluorescent chemosensors for the cellular microenvironment. With this review, we summarize the recent progress since 2015 towards small-molecule based fluorescent probes for imaging the microenvironment within specific cellular regions, including the mitochondria, lysosomes, lipid drops, endoplasmic reticulum, golgi, nucleus, cytoplasmic matrix and cell membrane. Further classifications at the suborganelle level, according to detection of microenvironmental factors by probes, including polarity, viscosity, temperature, pH and hypoxia, are presented. Notably, in each category, design principles, chemical synthesis, recognition mechanism, fluorescent signals, and bio-imaging applications are summarized and compared. In addition, the limitations of the current microenvironment-sensitive probes are analyzed and the prospects for future developments are outlined. In a nutshell, this review comprehensively summarizes and highlights recent progress towards small molecule based fluorescent probes for sensing and imaging the microenvironment within specific cellular regions since 2015. We anticipate that this summary will facilitate a deeper understanding of the topic and encourage research directed towards the development of probes for the detection of cellular microenvironments.
Collapse
Affiliation(s)
- Junling Yin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, People's Republic of China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jiangfeng Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
15
|
Hande PE, Shelke YG, Datta A, Gharpure SJ. Recent Advances in Small Molecule-Based Intracellular pH Probes. Chembiochem 2021; 23:e202100448. [PMID: 34695287 DOI: 10.1002/cbic.202100448] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/23/2021] [Indexed: 01/04/2023]
Abstract
Intracellular pH plays an important role in many biological and pathological processes. Small-molecule based pH probes are found to be the most effective for pH sensing because of ease of preparation, high sensitivity, and quick response. They have many advantages such as small perturbation to the functions of the target, functional adaptability, cellular component-specific localization, etc. The present review highlights the flurry of recent activity in the development of such probes. The probes are categorized based on the type of fluorophore used like quinoline, coumarin, BODIPY, rhodamine, indolium, naphthalimide, etc., and their analytical performance is discussed.
Collapse
Affiliation(s)
- Pankaj E Hande
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Yogesh G Shelke
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
16
|
Tannert A, Garcia Lopez J, Petkov N, Ivanova A, Peneva K, Neugebauer U. Lysosome-targeting pH indicator based on peri-fused naphthalene monoimide with superior stability for long term live cell imaging. J Mater Chem B 2021; 9:112-124. [DOI: 10.1039/d0tb02208j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lysosomal pH is altered in many pathophysiological conditions. We describe synthesis and spectral properties of a new lysosomal fluorescent marker dye suitable for microscopic evaluation of lysosomal distribution and pH changes.
Collapse
Affiliation(s)
- Astrid Tannert
- Leibniz Institute of Photonic Technology
- 07745 Jena
- Germany
- Center for Sepsis Control and Care
- Jena University Hospital
| | - Javier Garcia Lopez
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| | - Nikolay Petkov
- Faculty of Chemistry and Pharmacy
- Sofia University “St. Kliment Ohridski”
- Sofia
- Bulgaria
| | - Anela Ivanova
- Faculty of Chemistry and Pharmacy
- Sofia University “St. Kliment Ohridski”
- Sofia
- Bulgaria
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center of Soft Matter (JCSM)
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology
- 07745 Jena
- Germany
- Center for Sepsis Control and Care
- Jena University Hospital
| |
Collapse
|
17
|
|
18
|
Li L, Li Y, Dang Y, Chen T, Zhang A, Ding C, Xu Z. Imidazole-fused benzothiadiazole-based red-emissive fluorescence probe for lysosomal pH imaging in living cells. Talanta 2020; 217:121066. [PMID: 32498855 DOI: 10.1016/j.talanta.2020.121066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 02/04/2023]
|
19
|
Zheng J, Xu Y, Fan L, Qin S, Li H, Sang M, Li R, Chen H, Yuan Z, Li B. A Bioresponsive Near-Infrared Fluorescent Probe for Facile and Persistent Live-Cell Tracking. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002211. [PMID: 32686298 DOI: 10.1002/smll.202002211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Molecular imaging significantly transforms the field of biomedical science and facilitates the visualization, characterization, and quantification of biologic processes. However, it is still challenging to monitor cell localization in vivo, which is essential to the study of tumor metastasis and in the development of cell-based therapies. While most conventional small-molecule fluorescent probes cannot afford durable cell labeling, transfection of cells with fluorescent proteins is limited by their fixed fluorescence, poor tissue penetration, and interference of autofluorescence background. Here, a bioresponsive near-infrared fluorescent probe is reported as facile and reliable tool for real-time cell tracking in vivo. The design of this probe relies on a new phenomenon observed upon fluorobenzene-conjugated fluorescent dyes, which can form complexes with cytosolic glutathione and actively translocates to lysosomes, exhibiting enhanced and stable cell labeling. Fluorobenzene-coupled hemicyanine, a near-infrared fluorophore manifests to efficiently staining tumor cells without affecting their invasive property and enables persistent monitoring of cell migration in metastatic tumor murine models at high resolution for one week. The method of fluorobenzene functionalization also provides a simple and universal "add-on" strategy to render ordinary fluorescent probes suitable for long-term live-cell tracking, for which currently there is a deficit of suitable molecular tools.
Collapse
Affiliation(s)
- Jinrong Zheng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
- Sanyi Biotechnology Co., Ltd., 228 East Tianyuan Road, Jiangning District, Nanjing, 211100, China
| | - Yue Xu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Lixue Fan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Shuheng Qin
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Hua Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Mangmang Sang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Ruixi Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Haiyan Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Zhenwei Yuan
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing, 210009, China
| | - Bowen Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
20
|
A porphyrin-pyranine dyad for ratiometric fluorescent sensing of intracellular pH. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Méndez‐Ardoy A, Reina JJ, Montenegro J. Synthesis and Supramolecular Functional Assemblies of Ratiometric pH Probes. Chemistry 2020; 26:7516-7536. [DOI: 10.1002/chem.201904834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Alejandro Méndez‐Ardoy
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Jose J. Reina
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e, Materiais Moleculares (CIQUS)Departamento de Química OrgánicaUniversidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
22
|
Maity C, Ghosh D, Guha S. Assays for Intracellular Cyclic Adenosine Monophosphate (cAMP) and Lysosomal Acidification. Methods Mol Biol 2020; 1996:161-178. [PMID: 31127555 DOI: 10.1007/978-1-4939-9488-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclic adenosine monophosphate (3',5'-cAMP) is a multifunctional second messenger which controls extremely diverse and physiologically important biochemical pathways. Among its myriad roles, 3',5'-cAMP functions as an intracellular regulator of lysosomal pH, which is essential for the activity of acidic lysosomal enzymes. Defects in lysosomal acidification are attributed to many diseases like macular degeneration, Parkinson's, Alzheimer's, and cystic fibrosis. Strategic re-acidification of defective lysosomes by pharmacological increase of intracellular cAMP offers exciting therapeutic potential in these diseases. Modular assays for accurate assessment of intracellular cAMP and lysosomal pH are a critical component of this research. We describe label-free targeted metabolomics for quantitating intracellular cAMP and integrated assays for measuring lysosomal pH. These hybrid assays offer fast, unbiased information on intracellular cAMP concentrations and lysosomal pH that can be applied to many cell types and putative drug screening strategies.
Collapse
Affiliation(s)
- Chiranjit Maity
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Dipankar Ghosh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Sonia Guha
- Stein Eye Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Pal K, Kumar P, Koner AL. Deciphering interior polarity of lysosome in live cancer and normal cells using spectral scanning microscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 206:111848. [PMID: 32203725 DOI: 10.1016/j.jphotobiol.2020.111848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
A lysosome specific, pH tolerant, and polarity-sensitive fluorescent probe (LyPol) is designed and synthesized for the determination of lysosomal polarity in live cells. LyPol possesses an intramolecular charge transfer (ICT) properties with high quantum yield in water and in other polar solvents such as methanol, ethanol, dimethyl sulfoxide, acetonitrile, etc. The fluorescence maxima and lifetime increase linearly with a non-specific manner with an increase in the polarity of its surrounding environment. A morpholine group connected with an alkyl linker acts as a lysosome directing moiety, which is attached to the fluorescent core of LyPol. The selective localization of LyPol inside the lysosome was confirmed with live-cell confocal imaging. Further, the spectral scanning confocal technique was utilized to determine the emission spectrum of LyPol inside lysosome, and the polarity turns out to be quite lower as compared to water. Moreover, the combined spectroscopic and live-cell microscopy confirms that the interior of the lysosome is significantly non-polar in cancer cells compared to normal cells. We believe that this report on the measuring polarity inside the biological system with a solvatofluorochromic probe will be of immense interest to researchers working in the multidisciplinary area of biophysics, microscopy, chemical biology, and organelle biology.
Collapse
Affiliation(s)
- Kaushik Pal
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Prashant Kumar
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Apurba Lal Koner
- Bionanotechnology Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
24
|
Dong Y, Xiao H, Xing L, Wu C, Zhou J, Zhou Z, Liu Y, Zhuo S, Li P. Two-photon fluorescence visualization of lysosomal pH changes during mitophagy and cell apoptosis. Talanta 2020; 209:120549. [DOI: 10.1016/j.talanta.2019.120549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/28/2019] [Accepted: 11/09/2019] [Indexed: 01/24/2023]
|
25
|
Zhang Y, Zhao Y, Wu Y, Zhao B, Wang L, Song B. Hemicyanine based naked-eye ratiometric fluorescent probe for monitoring lysosomal pH and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117767. [PMID: 31707017 DOI: 10.1016/j.saa.2019.117767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Lysosome as the typical acidic organelle involved in many biological processes, the dysfunction of its pH would alter many diseases. Small-molecule fluorescent probe has been considered as vital tool for monitoring pH fluctuation in living cells. Herein, a hemicyanine based ratiometric fluorescent probe was synthesized, namely, 2,3-trimethy-3-[2-(dimethyl-amino-4-yl) vinyl]-3H-benzo[e]indole (BiDL), for rapidly detection pH under acidic conditions. BiDL exhibited ratio fluorescence emission (F534nm/F622nm) characteristic with pKa 4.25. BiDL showed good linearly response in pH 3.4-4.82, indicating that the probe can be used for quantitative detection pH. The probe also displayed large Stokes shift (112 nm/201 nm) under neutral and acidic conditions, respectively, which could effectively reduce the excitation interference. BiDL had excellent cell membrane permeability, good photo-stability and low toxicity in living cells. The dual-channel confocal fluorescent microscopic ratiometric imaging application of pH in HeLa cells and lysosome were achieved successfully, indicating that BiDL has good potential for investigating lysosome-relevant pathological and physiological processes.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yanliang Zhao
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Yingnan Wu
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Liyan Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Bo Song
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
26
|
Yuan G, Ding H, Zhou L. An effective FRET-based two-photon ratiometric fluorescent probe with double well-resolved emission bands for lysosomal pH changes in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117397. [PMID: 31336323 DOI: 10.1016/j.saa.2019.117397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
In cells, lysosome is an acidic organelle (approximately pH 4.5-5.5), whose pH changes plays a key role in mediating various biological processes. To address this issue, a lot of fluorescent probes have been developed and prepared for tracking lysosomal pH changes. However, few of these probes can realize the imaging of lysosomal pH changes in biosystems. Herein, a new two-photon (TP) ratiometric fluorescent probe (NpRhLys-pH) by adopting the fluorescence resonance energy transfer (FRET) strategy has been developed for imaging of lysosomal pH changes in living cells and zebrafish. In this probe NpRhLys-pH, constructed by conjugating a TP fluorophore (D-Π-A-structured naphthalimide derivative) with a rhodamine B fluorophore via a non-conjugated flexible linker, the morpholine moiety serves as a targeting unit for anchoring lysosomes, and the xanthane derivative shows a pH-modulated open/close form of the spirocycle. Such a scaffold affords the NpRhLys-pH is a reliable and specific probe for anchoring lysosomes in living cells and zebrafish with dual-channel emission peaks separated by 85 nm, and responds to lysosomal pH rapidly and reversibly with high selectivity and sensitivity, demonstrating it can be used as a powerful tool for the biological research of the relationship between physiology and pathology and lysosomal pH changes in biological systems.
Collapse
Affiliation(s)
- Gangqiang Yuan
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 41004, China
| | - Haiyuan Ding
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 41004, China
| | - Liyi Zhou
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 41004, China.
| |
Collapse
|
27
|
Zhu JL, Xu Z, Yang Y, Xu L. Small-molecule fluorescent probes for specific detection and imaging of chemical species inside lysosomes. Chem Commun (Camb) 2019; 55:6629-6671. [PMID: 31119257 DOI: 10.1039/c9cc03299a] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past few years, the preparation of novel small-molecule fluorescent probes for specific detection and imaging of chemical species inside lysosomes has attracted considerable attention because of their wide applications in chemistry, biology, and medical science. This feature article summarizes the recent advances in the design and preparation of small-molecule fluorescent probes for specific detection of chemical species inside lysosomes. In addition, their properties and applications for the detection and imaging of pH, H2O2, HOCl, O2˙-, lipid peroxidation, H2S, HSO3-, thiols, NO, ONOO-, HNO, Zn2+, Cu2+, enzymes, etc. in lysosomes are discussed as well.
Collapse
Affiliation(s)
- Jun-Long Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, P. R. China.
| | | | | | | |
Collapse
|
28
|
Wang J, Li Y, Gong Q, Wang H, Hao E, Lo PC, Jiao L. β-AlkenylBODIPY Dyes: Regioselective Synthesis via Oxidative C-H Olefination, Photophysical Properties, and Bioimaging Studies. J Org Chem 2019; 84:5078-5090. [PMID: 30964680 DOI: 10.1021/acs.joc.9b00020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of 2-alkenyl- and 2,6-dialkenylboron dipyrromethene (BODIPY) derivatives were synthesized through Pd(II)-catalyzed regioselective and stereoselective oxidative C-H olefination in one step. The 2-alkenyl BODIPY derivative further reacted with various amines regioselectively at the 5-position through direct oxidative nucleophilic substitution. The photophysical properties of the 2-alkenyl- and 2,6-dialkenyl-substituted BODIPYs were investigated, which showed great potential in fluorescent bioimaging.
Collapse
Affiliation(s)
- Jun Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Yongxin Li
- Department of Biomedical Sciences , City University of Hong Kong , Kowloon , Hong Kong, S.A.R. China
| | - Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Pui-Chi Lo
- Department of Biomedical Sciences , City University of Hong Kong , Kowloon , Hong Kong, S.A.R. China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| |
Collapse
|
29
|
Tian Z, Tian X, Feng L, Tian Y, Huo X, Zhang B, Deng S, Ma X, Cui J. A highly sensitive and selective two-photon fluorescent probe for glutathione S-transferase detection and imaging in living cells and tissues. J Mater Chem B 2019; 7:4983-4989. [DOI: 10.1039/c9tb00834a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Design and development of a two-photon fluorescent probe for GST detection and imaging in living cells and deep tissues.
Collapse
Affiliation(s)
- Zhenhao Tian
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Ganjingzi District
- Dalian 116024
- China
| | - Xiangge Tian
- College of Pharmacy
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Lei Feng
- College of Pharmacy
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Yan Tian
- College of Pharmacy
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Xiaokui Huo
- College of Pharmacy
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Baojing Zhang
- College of Pharmacy
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Sa Deng
- College of Pharmacy
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Xiaochi Ma
- College of Pharmacy
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Ganjingzi District
- Dalian 116024
- China
| |
Collapse
|
30
|
Jiao C, Pang J, Shen L, Lu W, Zhang P, Liu Y, Li J, Jia X, Wang Y. A “weak acid and weak base” type fluorescent probe for sensing pH: mechanism and application in living cells. RSC Adv 2019; 9:20982-20988. [PMID: 35515522 PMCID: PMC9066030 DOI: 10.1039/c9ra03203g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022] Open
Abstract
A simple pH fluorescent probe, N-(6-morpholino-1, 3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) isonicotinamide (NDI), based on naphthalimide as the fluorophore and isonicotinic acid hydrazide as the reaction site was synthesized and characterized. It is useful for monitoring acidic and alkaline pH. The results of pH titration indicated that NDI exhibits obvious emission enhancement with a pKa of 4.50 and linear response to small pH fluctuations within the acidic range of 3.00–6.50. Interestingly, NDI also displayed strong pH-dependent characteristics with pKa 9.34 and linearly responded to an alkaline range of 8.30–10.50. The sensing response mechanism was confirmed by 1H NMR and ESI-MS spectroscopy. The mechanism of the optical responses of NDI toward pH was also determined by density functional theory (DFT) calculations. In addition, NDI displayed a highly selective and sensitive response to hydrogen ions and hydroxyl ions. The probe was successfully applied to image acidic and alkaline pH value fluctuations in HeLa cells and has lysosomal targeting ability. When the probe was in the protonation process, the fluorescence intensity gradually decreased, whereas when the probe was in the deprotonation process, the fluorescence intensity gradually increased.![]()
Collapse
Affiliation(s)
- Chunpeng Jiao
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Jingxiang Pang
- Shandong Medicinal Biotechnology Center
- Shandong Academy of Medical Sciences
- Jinan
- China
| | - Li Shen
- College of Science
- China University of Petroleum (East China)
- Qingdao
- China
- College of Chemical Engineering and Environmental Chemistry
| | - Wenjuan Lu
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Pingping Zhang
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Yuanyuan Liu
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Jing Li
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Xianhui Jia
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| | - Yanfeng Wang
- School of Medicine and Life Sciences
- University of Jinan-Shandong Academy of Medical Sciences
- Jinan 250200
- China
- Institute of Materia Medica
| |
Collapse
|
31
|
Niu W, Jia J, Li J, Zhang C, Yun K. Ratiometric emission NIR-fluorescent probe for the detection of lysosomal pH in living cells and in vivo. NEW J CHEM 2019. [DOI: 10.1039/c9nj02771h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A lysosome-targeted ratiometric emission NIR-fluorescent probe for monitoring the lysosomal pH changes at a cellular level and LPS-mediated inflammation in vivo.
Collapse
Affiliation(s)
- Weifen Niu
- School of Forensic Medicine
- Shanxi Medical University
- Taiyuan 030001
- P. R. China
| | - Juan Jia
- School of Forensic Medicine
- Shanxi Medical University
- Taiyuan 030001
- P. R. China
| | - Junkai Li
- School of Forensic Medicine
- Shanxi Medical University
- Taiyuan 030001
- P. R. China
| | - Chao Zhang
- School of Forensic Medicine
- Shanxi Medical University
- Taiyuan 030001
- P. R. China
| | - Keming Yun
- School of Forensic Medicine
- Shanxi Medical University
- Taiyuan 030001
- P. R. China
| |
Collapse
|
32
|
Shi Y, Meng X, Yang H, Song L, Liu S, Xu A, Chen Z, Huang W, Zhao Q. Lysosome-specific sensing and imaging of pH variations in vitro and in vivo utilizing a near-infrared boron complex. J Mater Chem B 2019. [DOI: 10.1039/c8tb03353f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A NIR lysosome-targeting boron complex has been developed based on hemicyanine for monitoring pH variations in vitro and in vivo.
Collapse
Affiliation(s)
- Yuxiang Shi
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Xiangchun Meng
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Huiran Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Linna Song
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Shujuan Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Aqiang Xu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Zejing Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors
- Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications (NUPT)
- Nanjing 210023
- P. R. China
| |
Collapse
|
33
|
Kong X, Di L, Fan Y, Zhou Z, Feng X, Gai L, Tian J, Lu H. Lysosome-targeting turn-on red/NIR BODIPY probes for imaging hypoxic cells. Chem Commun (Camb) 2019; 55:11567-11570. [DOI: 10.1039/c9cc04416g] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two lysosome-targeting turn-on red/NIR BODIPY probes for imaging hypoxic cells were rationally designed.
Collapse
Affiliation(s)
- Xiangduo Kong
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University
- Hangzhou
- P. R. China
| | - Linting Di
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University
- Hangzhou
- P. R. China
| | - Yunshi Fan
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Zhikuan Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University
- Hangzhou
- P. R. China
| | - Xinjiang Feng
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University
- Hangzhou
- P. R. China
| | - Lizhi Gai
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University
- Hangzhou
- P. R. China
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
| | - Hua Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology
- Ministry of Education
- Hangzhou Normal University
- Hangzhou
- P. R. China
| |
Collapse
|
34
|
Quinoline-based ratiometric fluorescent probe for detection of physiological pH changes in aqueous solution and living cells. Talanta 2019; 192:6-13. [DOI: 10.1016/j.talanta.2018.09.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 12/17/2022]
|
35
|
Zhu M, Zhang J, Zhou Y, Xing P, Gong L, Su C, Qi D, Du H, Bian Y, Jiang J. Two-Photon Excited FRET Dyads for Lysosome-Targeted Imaging and Photodynamic Therapy. Inorg Chem 2018; 57:11537-11542. [PMID: 30156839 DOI: 10.1021/acs.inorgchem.8b01581] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two-photon excitable fluorescent dyes with integrated functions of targeted imaging and photodynamic therapy (PDT) are highly desired for the development of cancer theranostic agents. Herein, fluorescence resonance energy transfer (FRET) dyads, AceDAN-H2Por-Lyso (1a) and AceDAN-ZnPor-Lyso (1b), were developed for two-photon excited (TPE) lysosome-targeted fluorescence imaging and PDT of cancer cells. Under one-photon or two-photon excitation, the AceDAN donor can effectively transfer the excited state energy to the porphyrin acceptor via high efficient FRET, leading to the generation of deep-red fluorescence and singlet oxygen for cell imaging and PDT, respectively. 1a and 1b exhibit high photocytotoxicity and low dark cytotoxicity, in addition to strong lysosomal targeting capability in living cells. By taking the advantages of the two-photon absorption properties of the AceDAN donor and the properly distributed S1 and T1 states of the porphyrin acceptor, the AceDAN-porphyrin dyads 1a and 1b have been successfully applied to TPE-fluorescence imaging for tracking the significant morphology changes of cancer cells under two-photon laser irradiation.
Collapse
Affiliation(s)
- Mengliang Zhu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Jinghui Zhang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yabin Zhou
- Department of Biology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Peipei Xing
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China.,Beijing Vocational College of Agriculture (Beiyuan) , Beijing 100012 , China
| | - Lei Gong
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Chaorui Su
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Hongwu Du
- Department of Biology , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yongzhong Bian
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry , University of Science and Technology Beijing , Beijing 100083 , China
| |
Collapse
|