1
|
Gu Z, Wang J, Fu Y, Pan H, He H, Gan Q, Liu C. Smart Biomaterials for Articular Cartilage Repair and Regeneration. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202212561] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Indexed: 01/06/2025]
Abstract
AbstractArticular cartilage defects bring about disability and worldwide socioeconomic loss, therefore, articular cartilage repair and regeneration is recognized as a global issue. However, due to its avascular and nearly acellular characteristic, cartilage tissue regeneration ability is limited to some extent. Despite the availability of various treatment methods, including palliative drugs and surgical regenerative therapy, articular cartilage repair and regeneration still face major challenges due to the lack of appropriate methods and materials. Smart biomaterials can regulate cell behavior and provide excellent tissue repair and regeneration microenvironment, thus inducing articular cartilage repair and regeneration. This process is adjusted by controlling drug/bioactive factors release via responding to exogenous/endogenous stimuli, tailoring materials’ structure and function similar to native cartilage or providing physiochemical and physical signaling factors. Herein, smart biomaterials, recently applied in articular cartilage repair and regeneration, are elaborated from two aspects: smart drug release system and smart scaffolds. Furthermore, articular cartilage and its defects and advanced manufacturing techniques of smart biomaterials are discussed in brief. Finally, perspectives for smart biomaterials used in articular cartilage repair and regeneration are presented and the clinical translation of smart biomaterials is emphasized.
Collapse
Affiliation(s)
- Zhanghao Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Jiayi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yu Fu
- School of Aerospace Engineering and Applied Mechanics Tongji University Zhangwu Road 100 Shanghai 200092 P. R. China
| | - Hao Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education East China University of Science and Technology Shanghai 200237 P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
2
|
Romero Castro VL, Nomeir B, Arteni AA, Ouldali M, Six JL, Ferji K. Dextran-Coated Latex Nanoparticles via Photo-RAFT Mediated Polymerization Induced Self-Assembly. Polymers (Basel) 2021; 13:4064. [PMID: 34883567 PMCID: PMC8658814 DOI: 10.3390/polym13234064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Polysaccharide coated nanoparticles represent a promising class of environmentally friendly latex to replace those stabilized by small toxic molecular surfactants. We report here an in situ formulation of free-surfactant core/shell nanoparticles latex consisting of dextran-based diblock amphiphilic copolymers. The synthesis of copolymers and the immediate latex formulation were performed directly in water using a photo-initiated reversible addition fragmentation chain transfer-mediated polymerization induced self-assembly strategy. A hydrophilic macromolecular chain transfer-bearing photosensitive thiocarbonylthio group (eDexCTA) was first prepared by a modification of the reducing chain end of dextran in two steps: (i) reductive amination by ethylenediamine in the presence of sodium cyanoborohydride, (ii) then introduction of CTA by amidation reaction. Latex nanoparticles were then formulated in situ by chain-extending eDexCTA using 2-hydroxypropyl methacrylate (HPMA) under 365 nm irradiation, leading to amphiphilic dextran-b-poly(2-hydroxypropyl methacrylate) diblock copolymers (DHX). Solid concentration (SC) and the average degree of polymerization - Xn-- of PHPMA block (X) were varied to investigate their impact on the size and the morphology of latex nanoparticles termed here SCDHX. Light scattering and transmission electron microscopy analysis revealed that SCDHX form exclusively spherical nano-objects. However, the size of nano-objects, ranging from 20 nm to 240 nm, increases according to PHPMA block length.
Collapse
Affiliation(s)
| | - Brahim Nomeir
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| | - Ana Andreea Arteni
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (A.A.A.); (M.O.)
| | - Malika Ouldali
- Cryo-Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France; (A.A.A.); (M.O.)
| | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, 54000 Nancy, France; (V.L.R.C.); (B.N.); (J.-L.S.)
| |
Collapse
|
3
|
Choi J, Takata T, Ajiro H. Pseudo-Polyrotaxane Stereocomplex with α-Cyclodextrin and Block Copolymers Using Poly(ethylene glycol) and Polylactide. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- JaeYeong Choi
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Toshikazu Takata
- School of Chemical Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8503, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Hiroharu Ajiro
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
4
|
El Founi M, Laroui H, Canup BSB, Ametepe JS, Vanderesse R, Acherar S, Babin J, Ferji K, Chevalot I, Six JL. Doxorubicin Intracellular Release Via External UV Irradiation of Dextran- g-poly( o-nitrobenzyl acrylate) Photosensitive Nanoparticles. ACS APPLIED BIO MATERIALS 2021; 4:2742-2751. [PMID: 35014313 DOI: 10.1021/acsabm.0c01644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, innovative doxorubicin-loaded nanoparticles (NPs) made of a photosensitive poly(o-nitrobenzyl acrylate) (PNBA) hydrophobic matrix and an hydrophilic dextran (Dex) shell were first formulated by the emulsion-solvent evaporation process. Doxorubicin (DOX), a very well-known anticancer drug, was herein chosen as the model. DOX-loaded NPs were successfully produced by covering the hydrophobic PNBA core with Dex chains either physically adsorbed or covalently linked by changing process parameters as the presence of a catalyst (CuBr or CuSO4/ascorbic acid). It was then proved that the neutralization of DOX optimized drug loading. DOX loading and release were independent of the coverage mechanism if the catalyst used to covalently link the shell to the core was correctly chosen. Second, the kinetics of DOX release were investigated by simple diffusion or light irradiation of the NPs. Experiments showed that less than 20% of DOX was released by simple diffusion after 48 h in PBS or DMEM media when 45% of DOX released after only 30 s of light irradiation of the NPs. Finally, the impact of the phototriggered DOX release on cell viability was investigated on various cell lines [Caco-2, HepG2, HCT-116, and HT-29 cells as well as murine macrophages (RAW 264.7)]. Cellular mortality was evaluated to be dependent on the cell lines tested. Our approach provided an improved DOX release toward the human liver cancer cell line, and a high internalization of the PNBA-based NPs into HepG2 cells was observed using fluorescence microscopy.
Collapse
Affiliation(s)
| | - Hamed Laroui
- Department of Chemistry/Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Brandon S B Canup
- Department of Chemistry/Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Joseph S Ametepe
- Department of Chemistry/Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | | | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| | - Jérome Babin
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| | | | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| |
Collapse
|
5
|
Ikkene D, Arteni AA, Ouldali M, Six JL, Ferji K. Self-assembly of amphiphilic copolymers containing polysaccharide: PISA versus nanoprecipitation, and the temperature effect. Polym Chem 2020. [DOI: 10.1039/d0py00407c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The self-assembly methods and the temperature have a considerable impact on the morphology of the resulting nanoobjects in the case of amphiphilic glycopolymers.
Collapse
Affiliation(s)
| | - Ana Andreea Arteni
- Université Paris-Saclay
- CEA
- CNRS
- Institute for Integrative Biology of the Cell (I2BC)
- Cryo-electron Microscopy Facility
| | - Malika Ouldali
- Université Paris-Saclay
- CEA
- CNRS
- Institute for Integrative Biology of the Cell (I2BC)
- Cryo-electron Microscopy Facility
| | - Jean-Luc Six
- Université de Lorraine
- CNRS
- LCPM
- F-54000 Nancy
- France
| | - Khalid Ferji
- Université de Lorraine
- CNRS
- LCPM
- F-54000 Nancy
- France
| |
Collapse
|
6
|
Chebil A, Funfschilling D, Léonard M, Six JL, Nouvel C, Durand A. Amphiphilic Polysaccharides Acting both as Stabilizers and Surface Modifiers during Emulsification in Microfluidic Flow-Focusing Junction. ACS APPLIED BIO MATERIALS 2018; 1:879-887. [PMID: 34996181 DOI: 10.1021/acsabm.8b00303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A continuous emulsion/solvent diffusion process was designed for the preparation of polysaccharide-covered poly(d,l-lactide) (PLA) microparticles. The emulsification step was carried out in a flow-focusing junction where ethyl acetate containing dissolved PLA was dispersed into an aqueous solution of hydrophobically modified dextran. It was demonstrated that poly(dimethylsiloxane) devices could be used for oil-in-water emulsion preparation provided that the microfluidic devices were preconditioned by simply circulating the aqueous phase containing the amphiphilic polysaccharide during a sufficient time (30 h). The adsorption of the polymers at the surface of the channel walls permitted the wetting by the aqueous phase with a hydrophilic character maintained at least throughout 2 months. The preconditioning time was significantly reduced by pretreating the microfluidic device with piranha solution and KOH solution during 15 min each before the circulation of the aqueous solution of dextran derivative. Dextran-covered PLA microparticle aqueous suspensions were produced with well-controlled size distribution. The suspensions could be lyophilized and reconstituted by retrieving the initial size distribution without adding any cryoprotectant. The reported procedure was used for preparing octyl gallate-loaded PLA microparticles.
Collapse
Affiliation(s)
- Asma Chebil
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | | | | | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | - Cécile Nouvel
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | - Alain Durand
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| |
Collapse
|