1
|
Qian Y, Chen G, Ma C, Li L, Yang T, Zhu C, Gao H, Hu A, Guo X, Yang W, Yu Y, Yang T, Liu W. N-Doped Carbon Nanodots as Temperature Sensors and Fluorescent Probes for the Detection of Tinidazole in Milk. J Fluoresc 2025:10.1007/s10895-024-04126-5. [PMID: 39792314 DOI: 10.1007/s10895-024-04126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
In this study, nitrogen-doped carbon nanodots (N-CDs) with temperature and fluorescence sensing were prepared via hydrothermal method using L-lysine and ethylenediamine as precursors. The synthesized N-CDs exhibited spherical morphology with sizes ranging from 2.8 to 5.2 nm, with an average diameter of 4.03 nm. Maximum fluorescence emission was observed at 390 nm upon excitation at 320 nm, with the excitation spectrum closely overlapping the absorption spectrum of tinidazole (TNZ). In the temperature range of 20 ~ 50 °C, the fluorescence intensity of N-CDs decreased linearly with the increase of temperature. TNZ was detected based on inner filter effect (IFE) using N-CDs as a fluorescent probe. The fluorescence quenching degree had a good linear correlation with the TNZ concentration in the range of 1~100 µM (r = 0.9970), and the detection limit was 0.362 µM. In addition, the detection limits of other nitroimidazole antibiotics, including metronidazole (MNZ), Ornidazole (OMZ) and Seknidazole (SNZ), were 0.324 µM, 0.345 µM and 0.341 µM, respectively. Importantly, this method exhibits minimal interference from ions present in milk and has been validated in real milk samples, with recovery rates ranging from 92.56 to 107.27%. These results highlight the method's strong potential for application in food analysis.
Collapse
Affiliation(s)
- Yali Qian
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Guoqing Chen
- School of Science, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China.
| | - Chaoqun Ma
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Lei Li
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Taiqun Yang
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Chun Zhu
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Hui Gao
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Anqi Hu
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Xingyi Guo
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Wenhui Yang
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Yuebin Yu
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Tingjian Yang
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| | - Wang Liu
- School of Science, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center of Light Industrial optoelectronic engineering and Technology, Wuxi, 214122, China
| |
Collapse
|
2
|
Yang YQ, Zhang Y, Liu Y, Lin F, Zhang H. White-Light Emission from a Host-Guest Composite between Carboxylatopillar[5]arene-Modified N-Doped Carbon Dots and Rhodamine 6G for Rutin Detection. ACS OMEGA 2024; 9:14429-14435. [PMID: 38559962 PMCID: PMC10975606 DOI: 10.1021/acsomega.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
The construction of tunable white-light-emitting materials has garnered increasing attention in the scientific community. In this study, N-doped carbon dots (N-CDs) were surface-modified with carboxylatopillar[5]arene (CP[5]) using an EDC-NHS coupling reaction to create CCDs. CCDs were then conjugated with rhodamine 6G (R6G) through host-guest interactions to fabricate the CCDs-R6G composites. These composites produced two-color fluorescence emission peaks at 447 and 557 nm when excited by a wavelength of 340 nm. Excitingly, white-light emission (0.28, 0.30) can be readily achieved by varying the R6G concentration. To further explore potential applications, a new detection method for rutin (RT) based on the inner filter effect (IFE) was developed. Experimental results verify the practicality and reliability of the fluorescence sensor based on CCDs-R6G composites for RT detection in real samples.
Collapse
Affiliation(s)
- Yun-qiong Yang
- School of Environmental and
Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| | - Yuan Zhang
- School of Environmental and
Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| | - Yang Liu
- School of Environmental and
Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| | - Feier Lin
- School of Environmental and
Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| | - Hao Zhang
- School of Environmental and
Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| |
Collapse
|
3
|
Zhu J, Yu H, Chang C, Liang B, Li Q, Dai K, Jiang C. Background-Free and Reversible Upconversion Hydrogel Sensing Platform for Visual Monitoring of Sulfite. Anal Chem 2024; 96:2711-2718. [PMID: 38301229 DOI: 10.1021/acs.analchem.3c05711] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Excessive sulfite usage in food and pharmaceutical production causes respiratory and neurological diseases, underscoring the need for a sensitive and rapid quantification strategy. The portable sensing platform based on a luminescent hydrogel sensor is a powerful tool for the on-site, real-time detection of sulfite ions. However, the lack of recyclability in almost all reaction-based hydrogel sensors increases the application cost. This study constructed a reversible and upconversion nanoprobe combining upconversion nanoparticles (UCNPs) and pararosaniline (PAR) for sulfite detection. The upconversion nanoprobe was further encapsulated in a three-dimensional polyacrylamide hydrogel matrix to create a background-free, reversible hydrogel sensor. The near-infrared excitation of UCNPs avoids the autofluorescence in the hydrogel and real samples. Meanwhile, PAR serves as a specific recognition unit for sulfite ions. After the addition of sulfites, a specific reaction occurs between PAR and sulfites, leading to the recovery of characteristic emission at 540 nm, achieving sensitive detection of sulfite ions. Importantly, this specific reaction is reversible under thermal treatment, allowing the hydrogel sensor to return to its initial state and thus enabling reversible detection of sulfite ions. Furthermore, a portable sensing platform is developed to realize point-of-care, real-time quantitative detection of sulfite ions. The proposed upconversion reversible hydrogel sensor provides a new sensing strategy for the detection of hazardous substances in food and offers new insights into the preparation of reversible, highly sensitive hydrogel sensors.
Collapse
Affiliation(s)
- Jiawei Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, China
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
| | - Hao Yu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, China
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
| | - Caidie Chang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, China
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
| | - Boyi Liang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, China
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
| | - Qiang Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, China
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
| | - Kai Dai
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, China
- Anhui Province Industrial Generic Technology Research Center for Alumics Materials, Huaibei Normal University, Huaibei 235000, China
| | - Changlong Jiang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
4
|
Li T, Dong Y, Su Y, Li Y, Wang J, Hu J, Li J. Facile preparation of low temperature carbon dots with long-wavelength emission and their sensing applications for crystal violet. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123863. [PMID: 38241934 DOI: 10.1016/j.saa.2024.123863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/21/2024]
Abstract
Crystal violet (CV) is one of the main components of common fungicides in daily life, which has inhibitory effect on gram-positive bacteria. However, CV remains in the environment for a long time and have potential risk of disease. Therefore, it is necessary to develop effective methods for detecting CV. Low-temperature carbon dots (LT-CDs) are studied to provide a new idea for the development of CDs green preparation technology from the perspective of low energy consumption. In this experiment, LT-CDs with long-wavelength emission were prepared based on the oxidation, cross-linking polymerization and Schiff base reaction using o-phenylenediamine and hydroquinone as carbon source at low temperature, and were characterized by various techniques. It was found that LT-CDs could be used as a fluorescent probe for quantitative detection of CV based on the inner filter effect, and the practicability of the method was verified by real samples.
Collapse
Affiliation(s)
- Tianze Li
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China.
| | - Yuanyuan Dong
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China.
| | - Yewenqing Su
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Yang Li
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Jiaming Wang
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Jing Hu
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| | - Jialin Li
- College of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin 150050, China
| |
Collapse
|
5
|
Song X, Zhao S, Xu Y, Chen X, Wang S, Zhao P, Pu Y, Ragauskas AJ. Preparation, Properties, and Application of Lignocellulosic-Based Fluorescent Carbon Dots. CHEMSUSCHEM 2022; 15:e202102486. [PMID: 35199466 DOI: 10.1002/cssc.202102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Carbon dots (CDs) are a relatively new type of fluorescent carbon material with excellent performance and widespread application. As the most readily available and widely distributed biomass resource, lignocellulosics are a renewable bioresource with great potential. Research into the preparation of CDs with lignocellulose (LC-CDs) has become the focus of numerous researchers. Compared with other carbon sources, lignocellulose is low cost, rich in structural variety, exhibits excellent biocompatibility,[1] and the structures of CDs prepared by lignin, cellulose, and hemicellulose are similar. This Review summarized research progress in the preparation of CDs from lignocellulosics in recent years and reviewed traditional and new preparation methods, physical and chemical properties, optical properties, and applications of LC-CDs, providing guidance for the formation and improvement of LC-CDs. In addition, the challenges of synthesizing LC-CDs were also highlighted, including the interaction of different lignocellulose components on the formation of LC-CDs and the nucleation and growth mechanism of LC-CDs; from this, current trends and opportunities of LC-CDs were examined, and some research methods for future research were put forward.
Collapse
Affiliation(s)
- Xueping Song
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Siyu Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Ying Xu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Xinrui Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, P. R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning, 530004, P. R. China
| | - Peitao Zhao
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou, 221116, P. R. China
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Yunqiao Pu
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
6
|
Zhang W, Ji Z, Zeng Z, Jayapalan A, Bagra B, Sheardy A, He P, LaJeunesse DR, Wei J. Dark-Field Microscopic Study of Cellular Uptake of Carbon Nanodots: Nuclear Penetrability. Molecules 2022; 27:2437. [PMID: 35458634 PMCID: PMC9032144 DOI: 10.3390/molecules27082437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023] Open
Abstract
Carbon nanodots are fascinating candidates for the field of biomedicine, in applications such as bioimaging and drug delivery. However, the nuclear penetrability and process are rarely studied and lack understanding, which limits their applications for drug carriers, single-molecule detection and live cell imaging. In this study, we attempt to examine the uptake of CNDs in cells with a focus on the potential nuclear penetrability using enhanced dark-field microscopy (EDFM) associated with hyperspectral imaging (HSI) to quantitatively determine the light scattering signals of CNDs in the cells. The effects of both CND incubation time and concentration are investigated, and plausible nuclear penetration involving the nuclear pore complex (NPC) is discussed. The experimental results and an analytical model demonstrate that the CNDs' uptake proceeds by a concentration-dependent three-stage behavior and saturates at a CND incubation concentration larger than 750 µg/mL, with a half-saturated concentration of 479 μg/mL. These findings would potentially help the development of CNDs' utilization in drug carriers, live cell imaging and other biomedical applications.
Collapse
Affiliation(s)
- Wendi Zhang
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| | - Zuowei Ji
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| | - Zheng Zeng
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| | - Anitha Jayapalan
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| | - Bhawna Bagra
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| | - Alex Sheardy
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| | - Peng He
- Department of Chemistry, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA;
| | - Dennis R. LaJeunesse
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA; (W.Z.); (Z.J.); (Z.Z.); (A.J.); (B.B.); (A.S.); (D.R.L.)
| |
Collapse
|
7
|
Nandhini C, Saravana Kumar P, Shanmugapriya R, Vennila K, Al-Sehemi AG, Pannipara M, Elango KP. A combination of experimental and TD-DFT investigations on the fluorescent detection of sulfite and bisulfite ions in aqueous solution via nucleophilic addition reaction. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Kundu S, Ghosh M, Sarkar N. State of the Art and Perspectives on the Biofunctionalization of Fluorescent Metal Nanoclusters and Carbon Quantum Dots for Targeted Imaging and Drug Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9281-9301. [PMID: 34297580 DOI: 10.1021/acs.langmuir.1c00732] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interface of nanobio science and cancer nanomedicine is one of the most important current frontiers in research, being full of opportunities and challenges. Ultrasmall fluorescent metal nanoclusters (MNCs) and carbon quantum dots (CQDs) have emerged as promising fluorescent nanomaterials due to their unique physicochemical and optical properties, facile surface functionalization, good photostability, biocompatibility, and aqueous dispersity. These characteristics make them advantageous over conventional fluorophores such as organic dye molecules and semiconductor quantum dots (QDs) for the detection, diagnosis, and treatment of various diseases including cancer. Recently, researchers have focused on the biofunctionalization strategy of the MNCs and CQDs which can tailor their physicochemical and biological properties and, in turn, can empower these biofunctionalized nanoprobes for diverse applications including imaging, drug delivery, theranostics, and other biomedical applications. In this invited feature article, we first discuss some fundamental structural and physicochemical characteristics of the fluorescent biocompatible quantum-sized nanomaterials which have some outstanding features for the development of multiplexed imaging probes, delivery vehicles, and cancer nanomedicine. We then demonstrate the diverse surface engineering of these fluorescent nanomaterials with reactive target specific functional groups which can help to construct multifunctional nanoprobes with improved targeting capabilities having minimal toxicity. The promising future of the biofunctionalized fluorescent quantum-sized nanomaterials in the field of bioanalytical and biomedical research is elaborately demonstrated, showing selected recent works with relevant applications. This invited feature article finally ends with a short discussion of the current challenges and future prospects of the development of these bioconjugated/biofunctionalized nanomaterials to provide insight into this burgeoning field of MNC- and CQD-based diagnostics and therapeutic applications.
Collapse
Affiliation(s)
- Sangita Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB India
| | - Meghna Ghosh
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB India
| |
Collapse
|
9
|
Chen Y, Lin J, Zhang R, He S, Ding Z, Ding L. Electrochemiluminescence of water-dispersed nitrogen and sulfur doped carbon dots synthesized from amino acids. Analyst 2021; 146:5287-5293. [PMID: 34338251 DOI: 10.1039/d1an00991e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A facile one-pot hydrothermal approach for synthesizing water-dispersed nitrogen and sulfur doped carbon dots (NS-CDs) with high luminescence quantum yield was explored, using cysteine and tryptophan as precursors. The NS-CDs were characterized by means of FT-IR spectroscopy, XRD, TEM, etc. It was found that the absolute photoluminescence quantum yield (QY) of the NS-CDs determined with an integrating sphere can reach up to 73%, with an average decay time of 17.06 ns. Electrochemiluminescence (ECL) behaviors and mechanisms of the NS-CDs/K2S2O8 coreactant system were investigated. When the working electrode was modified with the prepared NS-CDs, the ECL efficiency of the NS-CDs with K2S2O8 was 24%, relative to Ru(bpy)3Cl2/K2S2O8. This work shows great potential for the NS-CDs to be used in bioanalytical applications.
Collapse
Affiliation(s)
- Yanhua Chen
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| | | | | | | | | | | |
Collapse
|
10
|
Li F, Tang Y, Guo R, Lin W. Development of an Ultrasensitive Mitochondria-Targeted Near Infrared Fluorescent Probe for SO2 and Its Imaging in Living Cells and Mice. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Liu J, Li R, Yang B. Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications. ACS CENTRAL SCIENCE 2020; 6:2179-2195. [PMID: 33376780 PMCID: PMC7760469 DOI: 10.1021/acscentsci.0c01306] [Citation(s) in RCA: 597] [Impact Index Per Article: 119.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Indexed: 05/07/2023]
Abstract
Carbon dots (CDs), as a new type of carbon-based nanomaterial, have attracted broad research interest for years, because of their diverse physicochemical properties and favorable attributes like good biocompatibility, unique optical properties, low cost, ecofriendliness, abundant functional groups (e.g., amino, hydroxyl, carboxyl), high stability, and electron mobility. In this Outlook, we comprehensively summarize the classification of CDs based on the analysis of their formation mechanism, micro-/nanostructure and property features, and describe their synthetic methods and optical properties including strong absorption, photoluminescence, and phosphorescence. Furthermore, the recent significant advances in diverse applications, including optical (sensor, anticounterfeiting), energy (light-emitting diodes, catalysis, photovoltaics, supercapacitors), and promising biomedicine, are systematically highlighted. Finally, we envisage the key issues to be challenged, future research directions, and perspectives to show a full picture of CDs-based materials.
Collapse
Affiliation(s)
- Junjun Liu
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Rui Li
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular
Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
12
|
Kou X, Zhang X, Shao X, Jiang C, Ning L. Recent advances in optical aptasensor technology for amplification strategies in cancer diagnostics. Anal Bioanal Chem 2020; 412:6691-6705. [PMID: 32642836 DOI: 10.1007/s00216-020-02774-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Aptamers are chemically synthetic single-stranded DNA or RNA molecules selected by molecular evolution. They have been widely used as attractive tools in biosensing and bioimaging because they can bind to a large variety of targets with high sensitivity and high affinity and specificity. As recognition elements, aptamers contribute in particular to cancer diagnostics by recognizing different cancer biomarkers, while they can also facilitate ultrasensitive detection by further employing signal amplification elements. Optical techniques have been widely used for direct and real-time monitoring of cancer-related biomolecules and bioprocesses due to the high sensitivity, quick response, and simple operation, which has greatly benefited cancer diagnostics. In this review, we highlight recent advances in optical platform-based sensing strategies for cancer diagnostics aided by aptamers. Limitations and current challenges are also discussed.
Collapse
Affiliation(s)
- Xinyue Kou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
| | - Xujia Zhang
- Kangda College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Xuejun Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Chenyu Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China. .,Jinan Guokeyigong Science and Technology Development Co., Ltd., Jinan, 250103, Shandong, China.
| | - Limin Ning
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
13
|
Qie X, Zan M, Li L, Gui P, Chang Z, Ge M, Wang RS, Guo Z, Dong WF. High photoluminescence nitrogen, phosphorus co-doped carbon nanodots for assessment of microbial viability. Colloids Surf B Biointerfaces 2020; 191:110987. [PMID: 32325360 DOI: 10.1016/j.colsurfb.2020.110987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 12/24/2022]
Abstract
Assessment of microbial viability plays a key role in human health protection. Optical imaging based on fluorescent dyes is a simple and convenient way to assess microbial viability. However, it is still a challenge to obtain stable, nontoxic and low-cost dyes. Herein, we prepared a nitrogen and phosphorus co-doped carbon nanodots (N, P-CDs) via a one-step solvothermal method. The prepared CDs possess plenty of functional groups and exhibit high stability, good biocompatibility, excellent photoluminescent and low toxicity. Especially, the properties of high quantum yield (89.9%) and highly negative surface charge (-41.9 mV) make the prepared N, P-CDs ideal materials for microbial differentiation. Compared with commercial dyes, our CDs are more stable, cost less, which can rapidly distinguish dead microorganisms from living ones with higher specificity.
Collapse
Affiliation(s)
- Xingwang Qie
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China; University of Science and Technology of China, Hefei, 230026, PR China
| | - Minghui Zan
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, PR China
| | - Li Li
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China
| | - Ping Gui
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Zhimin Chang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China
| | - Mingfeng Ge
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China
| | - Ruo-Song Wang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China; Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Hohe Straße 6, 01069, Dresden, Germany
| | - Zhenzhen Guo
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, PR China.
| |
Collapse
|
14
|
Cui S, Wu Y, Liu Y, Guan Q, Zhang Y, Zhang Y, Luo S, Xu M, Wang J. Synthesis of carbon dots with a tunable photoluminescence and their applications for the detection of acetone and hydrogen peroxide. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Dual-emission carbon dots as biocompatible nanocarrier for in vitro/in vivo cell microenvironment ratiometric pH sensing in broad range. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01678-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Wang Y, Yang Y, Liu W, Ding F, Zou P, Wang X, Zhao Q, Rao H. A carbon dot-based ratiometric fluorometric and colorimetric method for determination of ascorbic acid and of the activity of ascorbic acid oxidase. Mikrochim Acta 2019; 186:246. [DOI: 10.1007/s00604-019-3341-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/26/2019] [Indexed: 12/29/2022]
|
17
|
Zhang S, Zhang D, Ding Y, Hua J, Tang B, Ji X, Zhang Q, Wei Y, Qin K, Li B. Bacteria-derived fluorescent carbon dots for highly selective detection ofp-nitrophenol and bioimaging. Analyst 2019; 144:5497-5503. [DOI: 10.1039/c9an01103j] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Schematic of the synthetic route for fluorescent CDs-BC and their applications in the detection ofp-NP and bioimaging.
Collapse
Affiliation(s)
- Shengting Zhang
- Faculty of Environmental Science and Engineering
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Dongfang Zhang
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Yafang Ding
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Jianhao Hua
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Bing Tang
- College of Life Sciences
- Wuhan University
- Wuhan
- China
| | - Xiuling Ji
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Qi Zhang
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Yunlin Wei
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
| | - Kunhao Qin
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
- Post-doctoral Research Station in Geological Resources and Geological Engineering
| | - Bo Li
- Faculty of Land Resource Engineering
- Kunming University of Science and Technology
- Kunming 650500
- China
| |
Collapse
|