1
|
Shen C, Xi X, Wu D, Guo X, Su Y, Liu R. Active-matrix extended-gate field-effect transistor array for simultaneous detection of multiple metabolites. Biosens Bioelectron 2025; 267:116787. [PMID: 39305822 DOI: 10.1016/j.bios.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 11/08/2024]
Abstract
With the deepening understanding of diseases, increasing attention has been paid to personalized healthcare and precise diagnosis, which usually depend on the simultaneous monitoring of multiple metabolites, therefore requiring biological sensing systems to possess high sensitivity, specificity, throughput, and instant monitoring capabilities. In this work, we demonstrated the active-matrix extended-gate field-effect transistor (AMEGFET) array that can perform instant analysis of various metabolites in small amounts of body fluids collected during routine physiological activities. The extended gate electrodes of the AMEGFETs comprise ordered mesoporous carbon fibers loaded with both oxidoreductase enzymes for specific metabolites and platinum nanoparticles. By selecting customized electrode combinations, the AMEGFET array can monitor the concentrations of metabolites closely associated with chronic diseases and lifestyles, such as glucose, uric acid, cholesterol, ethanol, and lactate. The switch function of AMEGFET not only simplifies the readout circuitry for large-scale arrays but also avoids the mutual interferences among sensing units. The high flexibility and scalability make the AMEGFET array widely applicable in establishing high-throughput sensing platforms for biomarkers, providing highly efficient technical support for proactive health and intelligent healthcare.
Collapse
Affiliation(s)
- Chaochao Shen
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Xi
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaojun Guo
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuezeng Su
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruili Liu
- Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Lei P, Zhao S, Asif M, Aziz A, Zhou Y, Dong C, Li M, Shuang S. Bovine Serum Albumin Template-Mediated Fabrication of Ruthenium Dioxide/Multiwalled Carbon Nanotubes: High-Performance Electrochemical Dopamine Biosensing in Human Serum. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11635-11641. [PMID: 38775800 DOI: 10.1021/acs.langmuir.4c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The presence of abnormal dopamine (DA) levels may cause serious neurological disorders, therefore, the quantitative analysis of DA and its related research are of great significance for ensuring health. Herein, the bovine serum albumin (BSA) template method has been proposed for the preparation of catalytically high-performance ruthenium dioxide/multiwalled carbon nanotube (RuO2/MWCNT) nanocomposites. The incorporation of MWCNTs has improved the active surface area and conductivity while effectively preventing the aggregation of RuO2 nanoparticles. The outstanding electrocatalytic performance of RuO2/MWCNTs has promoted the electro-oxidation of DA at neutral pH. The electrochemical sensing platform based on RuO2/MWCNTs has demonstrated a wide linear range (0.5 to 111.1 μM), low detection limit (0.167 μM), excellent selectivity, long-term stability, and good reproducibility for DA detection. The satisfactory recovery range of 94.7% to 103% exhibited by the proposed sensing podium in serum samples signifies its potential for analytical applications. The aforementioned results reveal that RuO2/MWCNT nanostructures hold promising aptitude in the electrochemical sensor to detect DA in real samples, further offering broad prospects in clinical and medical diagnosis.
Collapse
Affiliation(s)
- Peng Lei
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shan Zhao
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Muhammad Asif
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ayesha Aziz
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ying Zhou
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Minglu Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Ahmad A, Priyadarshini M, Yadav S, Ghangrekar MM, Surampalli RY. The potential of biochar-based catalysts in advanced treatment technologies for efficacious removal of persistent organic pollutants from wastewater: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Abdel-Aziz AM, Hassan HH, Badr IHA. Activated Glassy Carbon Electrode as an Electrochemical Sensing Platform for the Determination of 4-Nitrophenol and Dopamine in Real Samples. ACS OMEGA 2022; 7:34127-34135. [PMID: 36188318 PMCID: PMC9520556 DOI: 10.1021/acsomega.2c03427] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Glassy carbon electrode (GCE) was electrochemically activated using a repetitive cyclic voltammetric technique to develop an activated glassy carbon electrode (AGCE). The developed AGCE was optimized and utilized for the electrochemical assay of 4-nitrophenol (4-NP) and dopamine (DA). Cyclic voltammetry (CV) was employed to investigate the electrochemical behavior of the AGCE. Compared to the bare GCE, the developed AGCE exhibits a significant increase in redox peak currents of 4-NP and DA, which indicates that the AGCE significantly improves the electrocatalytic reduction of 4-NP and oxidation of DA. The electrochemical signature of the activation process could be directly associated with the formation of oxygen-containing surface functional groups (OxSFGs), which are the main reason for the improved electron transfer ability and the enhancement of the electrocatalytic activity of the AGCE. The effects of various parameters on the voltammetric responses of the AGCE toward 4-NP and DA were studied and optimized, including the pH, scan rate, and accumulation time. Differential pulse voltammetry (DPV) was also utilized to investigate the analytical performance of the AGCE sensing platform. The optimized AGCE exhibited linear responses over the concentration ranges of 0.04-65 μM and 65-370 μM toward 4-NP with a lower limit of detection (LOD) of 0.02 μM (S/N = 3). Additionally, the AGCE exhibited a linear responses over the concentration ranges of 0.02-1.0 and 1.0-100 μM toward DA with a lower limit of detection (LOD) of 0.01 μM (S/N = 3). Moreover, the developed AGCE-based 4-NP and DA sensors are distinguished by their high sensitivity, excellent selectivity, and repeatability. The developed sensors were successfully applied for the determination of 4-NP and DA in real samples with satisfactory recovery results.
Collapse
Affiliation(s)
- Ali M. Abdel-Aziz
- Chemistry
Department, Faculty of Science, Ain-Shams
University, Cairo 11566, Egypt
| | - Hamdy H. Hassan
- Chemistry
Department, Faculty of Science, Ain-Shams
University, Cairo 11566, Egypt
- Department
of Chemistry, Faculty of Science, Galala
University, New Galala
City, Suez 43511, Egypt
| | - Ibrahim H. A. Badr
- Chemistry
Department, Faculty of Science, Ain-Shams
University, Cairo 11566, Egypt
- Department
of Chemistry, Faculty of Science, Galala
University, New Galala
City, Suez 43511, Egypt
| |
Collapse
|
5
|
Yoon J, Cho HY, Shin M, Choi HK, Lee T, Choi JW. Flexible electrochemical biosensors for healthcare monitoring. J Mater Chem B 2021; 8:7303-7318. [PMID: 32647855 DOI: 10.1039/d0tb01325k] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the interest in wearable devices has increased recently, increasing biosensor flexibility has begun to attract considerable attention. Among the various types of biosensors, electrochemical biosensors are uniquely suited for the development of such flexible biosensors due to their many advantages, including their fast response, inherent miniaturization, convenient operation, and portability. Therefore, many studies on flexible electrochemical biosensors have been conducted in recent years to achieve non-invasive and real-time monitoring of body fluids such as tears, sweat, and saliva. To achieve this, various substrates, novel nanomaterials, and detection techniques have been utilized to develop conductive flexible platforms that can be applied to create flexible electrochemical biosensors. In this review, we discussed recently reported flexible electrochemical biosensors and divided them into specific categories including materials for flexible substrate, fabrication techniques for flexible biosensor development, and recently developed flexible electrochemical biosensors to externally monitor target molecules, thereby providing a means to noninvasively examine cells and body fluid samples. In conclusion, this review will discuss the materials, methods, recent studies, and perspectives on flexible electrochemical biosensors for healthcare monitoring and wearable biosensing systems.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
6
|
Yan M, Xin J, Fan L, Ye J, Xiao T, Huang J, Yang X. Electrochemistry and Electrochemiluminescence of Coumarin Derivative Microrods: Mechanism Insights. Anal Chem 2021; 93:3461-3469. [PMID: 33573377 DOI: 10.1021/acs.analchem.0c04783] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Organic molecules and related nanomaterials have attracted extensive attention in the realm of electrochemiluminescence (ECL). Herein, a well-known electroluminescence (EL) dopant 2,3,6,7-tetrahydro-1,1,7,7,-tetramethyl-1H,5H,11H-10-(2-benzothiazolyl)quinolizino-[9,9a,1gh] coumarin (C545T) is selected as a new ECL illuminant, which shows a high photoluminescence quantum yield of nearly 100% and excellent ECL performance in the organic phase. For utilizing C545T to achieve ECL detection in aqueous solution, organic microrods of C545T (C545T MRs) were synthesized by a precipitation method. Cyclic voltammetry and differential pulse voltammetry of C545T and C545T MRs in acetonitrile or phosphate buffer showed one reduction and multiple oxidation peaks, suggesting that the multiple charge states of C545T could be produced by continuous electron- or hole-injection processes. The annihilated ECL emission of C545T and C545T MRs was observed using ECL transient technology. In the presence of triethanolamine (TEOA) or potassium persulfate (K2S2O8), C545T MRs can also give bright anodic and cathodic ECL emission at the GCE/water interface. The proposed ECL system not only has multichannel ECL emission but also shows intense yellow emission (569 nm) with a relative ECL efficiency of 0.81 when TEOA was used as a coreactant. Benefiting from the strong ECL emission of the C545T MRs/TEOA system and the quenching effect of dopamine (DA) on ECL, a convenient sensor for DA was developed with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Mengxia Yan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianhui Xin
- University of Science and Technology of China, Hefei, Anhui 230026, China.,State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
| | - Libing Fan
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Jing Ye
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ting Xiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Spanu D, Binda G, Dossi C, Monticelli D. Biochar as an alternative sustainable platform for sensing applications: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105506] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Zeng J, Xu R, Jiao L, Wang Y, Chen L, Windle CD, Ding X, Zhang Z, Han Q, Qu L. A 3D-graphene fiber electrode embedded with nitrogen-rich-carbon-coated ZIF-67 for the ultrasensitive detection of adrenaline. J Mater Chem B 2020; 7:5291-5295. [PMID: 31464334 DOI: 10.1039/c9tb01223k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A novel nitrogen-rich-carbon-coated ZIF-67 embedded three-dimensional-graphene (ZIF-67/NC/3DG) fiber was fabricated via a facile one-pot electrodeposition self-assembly method, and used as a prominent electrode for the non-enzymatic detection of adrenaline (Ad). In this design, the prepared ZIF-67 adsorbs Ad through hydrogen bonding and electrostatic interaction, while polypyrrole functions as the precursor of the conductive NC that seamlessly connects ZIF-67 with the 3DG fiber electrode to ameliorate the poor conductivity of the ZIF-67 moiety and thus improve the sensitivity of the ZIF-67/NC/3DG fiber electrode for detecting Ad. The constructed fiber sensor shows a double linear response over the Ad concentration range of 0.06-95 μM with a high sensitivity of 44.6 mA mM-1 cm-2 and 95.0-5900 μM with a good sensitivity of 11.0 mA mM-1 cm-2, giving a low detection limit of 0.02 μM and excellent repeatability. The ZIF-67/NC/3DG fiber electrode was further successfully applied for the determination of Ad in a real sample of human serum, indicating that this fiber electrode is a promising miniaturized sensor for electrochemical analysis.
Collapse
Affiliation(s)
- Jinfeng Zeng
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Ruoyu Xu
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Le Jiao
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Yuze Wang
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Liwei Chen
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Christopher D Windle
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Xiaoteng Ding
- College of Life Sciences, Qingdao University, Qingdao 266071, P. R. China
| | - Zhipan Zhang
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Qing Han
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Liangti Qu
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
9
|
Stone Paper as a New Substrate to Fabricate Flexible Screen-Printed Electrodes for the Electrochemical Detection of Dopamine. SENSORS 2020; 20:s20123609. [PMID: 32604924 PMCID: PMC7349771 DOI: 10.3390/s20123609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
Flexible screen-printed electrodes (HP) were fabricated on stone paper substrate and amperometrically modified with gold nanoparticles (HP-AuNPs). The modified electrode displayed improved electronic transport properties, reflected in a low charge-transfer resistance (1220 Ω) and high apparent heterogeneous electron transfer rate constant (1.94 × 10−3 cm/s). The voltammetric detection of dopamine (DA) was tested with HP and HP-AuNPs electrodes in standard laboratory solutions (pH 6 phosphate-buffered saline (PBS)) containing various concentrations of analyte (10−7–10−3 M). As expected, the modified electrode exhibits superior performances in terms of linear range (10−7–10−3 M) and limit of detection (3 × 10−8 M), in comparison with bare HP. The determination of DA was tested with HP-AuNPs in spiked artificial urine and in pharmaceutical drug solution (ZENTIVA) that contained dopamine hydrochloride (5 mg/mL). The results obtained indicated a very good DA determination in artificial urine without significant matrix effects. In the case of the pharmaceutical drug solution, the DA determination was affected by the interfering species present in the vial, such as sodium metabisulfite, maleic acid, sodium chloride, and propylene glycol.
Collapse
|
10
|
Nankya R, Opar DO, Jung H. Mesoporous Graphene‐Modified Electrode for Independent and Selective Detection of Dopamine in the Presence of High Concentration of Ascorbic Acid. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Rosalynn Nankya
- Advanced Functional Nanohybrid Material Laboratory, Department of ChemistryDongguk University Seoul‐campus Seoul 04620 Republic of Korea
| | - David O. Opar
- Advanced Functional Nanohybrid Material Laboratory, Department of ChemistryDongguk University Seoul‐campus Seoul 04620 Republic of Korea
| | - Hyun Jung
- Advanced Functional Nanohybrid Material Laboratory, Department of ChemistryDongguk University Seoul‐campus Seoul 04620 Republic of Korea
- Research Center for Photoenergy Harvesting & Conversion TechnologyDongguk University Seoul‐campus Seoul 04620 Republic of Korea
| |
Collapse
|