1
|
|
2
|
Li P, Zhang J, Lin Q, Kong J, Fang X. Rapid differential diagnosis of the B.1.617.2 (delta) variant of SARS-CoV-2 using an automated Cas12a-microfluidic system. Chem Commun (Camb) 2021; 57:12270-12272. [PMID: 34751285 DOI: 10.1039/d1cc04874k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An automated Cas12a-microfluidic system was constructed to distinguish the B.1.617.2 (delta) variant of SARS-CoV-2 from the wild-type virus rapidly and was validated using 30 clinical samples, showing 100% consistency with next-generation sequencing. It will be a potential tool for the rapid differential diagnosis of the delta variant of SARS-CoV-2.
Collapse
Affiliation(s)
- Pintao Li
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China.
| | - Jin Zhang
- Qingdao International Travel Healthcare Center, Qingdao Customs, Qingdao 266071, P. R. China.
| | - Qiuyuan Lin
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China.
| | - Jilie Kong
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China.
| | - Xueen Fang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
3
|
Li X, Zhao X, Yang W, Xu F, Chen B, Peng J, Huang J, Mi S. Stretch-driven microfluidic chip for nucleic acid detection. Biotechnol Bioeng 2021; 118:3559-3568. [PMID: 34042175 DOI: 10.1002/bit.27839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 11/09/2022]
Abstract
Molecular diagnosis is an essential means to detect pathogens. The portable nucleic acid detection chip has excellent prospects in places where medical resources are scarce, and it is also of research interest in the field of microfluidic chips. Here, the article developed a new type of microfluidic chip for nucleic acid detection where stretching acts as the driving force. The sample entered the chip by applying capillary force. The strain valve was opened under the action of tensile force, and the spring pump generated the power to drive the fluid to flow to the detection chamber in a specific direction. The detection of coronavirus disease 2019 (COVID-19) was realized on the chip. The RT-LAMP amplification system was adopted to observe the liquid color in the detection chamber to decide whether the sample tested positive or negative qualitatively.
Collapse
Affiliation(s)
- Xiang Li
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| | - Xiaoyu Zhao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| | - Weihao Yang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| | - Fei Xu
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| | - Bailiang Chen
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| | - Jiwei Peng
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| | - Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| |
Collapse
|
4
|
Liu Y, Fang X, Sun X, Niu B, Chen Q. Detection of Allergen Genes in Peanut and Soybean by Circular Fluorescence Probe-Mediated Isothermal Amplification. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01883-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Tian F, Liu C, Deng J, Han Z, Zhang L, Chen Q, Sun J. A fully automated centrifugal microfluidic system for sample-to-answer viral nucleic acid testing. Sci China Chem 2020; 63:1498-1506. [PMID: 32837510 PMCID: PMC7387882 DOI: 10.1007/s11426-020-9800-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
The outbreak of virus-induced infectious diseases poses a global public-health challenge. Nucleic acid amplification testing (NAAT) enables early detection of pandemic viruses and plays a vital role in preventing onward transmission. However, the requirement of skilled operators, expensive instrumentation, and biosafety laboratories has hindered the use of NAAT for screening and diagnosis of suspected patients. Here we report development of a fully automated centrifugal microfluidic system with sample-in-answer-out capability for sensitive, specific, and rapid viral nucleic acid testing. The release of nucleic acids and the subsequent reverse transcription loop-mediated isothermal amplification (RT-LAMP) were integrated into the reaction units of a microfluidic disc. The whole processing steps such as injection of reagents, fluid actuation by rotation, heating and temperature control, and detection of fluorescence signals were carried out automatically by a customized instrument. We validate the centrifugal microfluidic system using oropharyngeal swab samples spiked with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) armored RNA particles. The estimated limit of detection for armored RNA particles is 2 copies per reaction, the throughput is 21 reactions per disc, and the assay sample-to-answer time is approximately 70 min. This enclosed and automated microfluidic system efficiently avoids viral contamination of aerosol, and can be readily adapted for virus detection outside the diagnostic laboratory.
![]()
Collapse
Affiliation(s)
- Fei Tian
- CAS Key Laboratory of Standardization and Measurement of Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chao Liu
- CAS Key Laboratory of Standardization and Measurement of Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement of Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ziwei Han
- CAS Key Laboratory of Standardization and Measurement of Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048 China
| | - Qinghua Chen
- CAS Key Laboratory of Standardization and Measurement of Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement of Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
6
|
Tian F, Liu C, Deng J, Han Z, Zhang L, Chen Q, Sun J. A fully automated centrifugal microfluidic system for sample-to-answer viral nucleic acid testing. SCIENCE CHINA. CHEMISTRY 2020. [PMID: 32837510 DOI: 10.1007/s11426-020-9800-6,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The outbreak of virus-induced infectious diseases poses a global public-health challenge. Nucleic acid amplification testing (NAAT) enables early detection of pandemic viruses and plays a vital role in preventing onward transmission. However, the requirement of skilled operators, expensive instrumentation, and biosafety laboratories has hindered the use of NAAT for screening and diagnosis of suspected patients. Here we report development of a fully automated centrifugal microfluidic system with sample-in-answer-out capability for sensitive, specific, and rapid viral nucleic acid testing. The release of nucleic acids and the subsequent reverse transcription loop-mediated isothermal amplification (RT-LAMP) were integrated into the reaction units of a microfluidic disc. The whole processing steps such as injection of reagents, fluid actuation by rotation, heating and temperature control, and detection of fluorescence signals were carried out automatically by a customized instrument. We validate the centrifugal microfluidic system using oropharyngeal swab samples spiked with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) armored RNA particles. The estimated limit of detection for armored RNA particles is 2 copies per reaction, the throughput is 21 reactions per disc, and the assay sample-to-answer time is approximately 70 min. This enclosed and automated microfluidic system efficiently avoids viral contamination of aerosol, and can be readily adapted for virus detection outside the diagnostic laboratory. Electronic Supplementary Material Supplementary material is available for this article at 10.1007/s11426-020-9800-6 and is accessible for authorized users.
Collapse
Affiliation(s)
- Fei Tian
- CAS Key Laboratory of Standardization and Measurement of Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chao Liu
- CAS Key Laboratory of Standardization and Measurement of Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement of Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ziwei Han
- CAS Key Laboratory of Standardization and Measurement of Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048 China
| | - Qinghua Chen
- CAS Key Laboratory of Standardization and Measurement of Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement of Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|