1
|
Jiang Y, Zhao G, Gong Y, Chen Y, Li C, Han S, Deng Y, Zhao J, Wang J, Wang C. Dodecapeptides derived from human cathelicidin with potent activity against carbapenem-resistant Acinetobacter baumannii. Eur J Med Chem 2025; 289:117477. [PMID: 40056800 DOI: 10.1016/j.ejmech.2025.117477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/18/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The increasing infections caused by carbapenem-resistant Acinetobacter baumannii (CRAB) poses a serious threat to global public health. Antimicrobial peptides (AMPs) are alternatives to conventional antibiotics in combating superbugs. However, discovering AMPs with low synthesis costs and strong antibacterial effects against CRAB is challenging. In this study, we synthesized 28 dodecapeptides for bactericidal assessment by site mutation and all-hydrocarbon stapling on the basis of the antibacterial core of human cathelicidin. The linear derivative d12 (Q5RD9I-KR12) and the i, i + 4 stapled peptide d24, which was generated by substituting Val4 and Lys8 of d12 to staples, stood out among the candidates. These short AMPs efficiently bound to bacterial membrane and penetrated it in a lipid A-dependent manner, resulting in low minimal inhibitory concentrations to inactivate CRAB clinical isolates (2.5-20 μg/mL). The CRAB infection mouse models of irradiation-assisted local pulmonary infection and intra-abdominal sepsis revealed that treatment with d12 and d24 significantly eliminated CRAB in vivo and thereby increased mouse survival. Owing to its improved proteolytic resistance, d24 outperformed d12 in suppressing intra-abdominal CRAB infection. The excellent antibacterial effects, good biocompatibility, and facile synthesis make d12 and d24 promising candidates to curb CRAB infections in different application scenarios.
Collapse
Affiliation(s)
- Yiyi Jiang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Gaomei Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yali Gong
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Burn Research, the First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Yin Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Chenwenya Li
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Songling Han
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Youcai Deng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Jinghong Zhao
- Department of Nephrology, Xinqiao Hospital, Army Medical University, Chongqing, 400047, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
2
|
Zhao L, Hu M, Li Y, Xin J, Fang Y, Xue C, Dong N. Production and Functional Evaluation of Recombinant Active Peptide RH in Pichia Pastoris: Protection Against Escherichia Coli Induced Cell Death. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10510-9. [PMID: 40082318 DOI: 10.1007/s12602-025-10510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
In the gastro-intestinal tract, Escherichia coli (E.coli) infections can trigger programmed cell death of intestinal epithelial cells, through mechanisms such as oxidative stress and ferroptosis, which compromise gut barrier integrity. Given the rising prevalence of antibiotic-resistant E. coli strains, there is an urgent need to develop innovative antimicrobial therapies that go beyond conventional antibiotics. Antimicrobial peptides represent a promising alternative for combating resistant bacterial strains due to their dual role in antimicrobial activity and immune modulation. In this study, we constructed multiple expression cassettes to express porcine β-defensin 2 (PBD2)-derived peptide RH in Pichia pastoris (P. pastoris), purified the peptide using nickel column affinity chromatography, and assessed its in vivo and in vitro activity. The results indicated that under the optimal condition (3% methanol), the total secreted protein concentration reached 306.5 mg/L after 120 h of fermentation. Following purification, the yield of recombinant active peptide RH (rRH) can reached 59.34 mg/L. The rRH exhibits strong antimicrobial activity and resistance to oxidation, and by inhibiting oxidative stress-mediated ferroptosis it reduces E. coli-induced cell death and injury in the jejunum. This dual functionality of rRH positions it as a potential therapeutic candidate for treating gastrointestinal infections and improving gut health, providing a crucial alternative to traditional antibiotics.
Collapse
Affiliation(s)
- Lu Zhao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Mingyang Hu
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Yuwen Li
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Jiaoyu Xin
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Yuxin Fang
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China
| | - Chenyu Xue
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, PR China.
| |
Collapse
|
3
|
Dong R, Liu R, Liu Z, Liu Y, Zhao G, Li H, Hou S, Ma X, Kang H, Liu J, Guo F, Zhao P, Wang J, Wang C, Wu X, Ye S, Zhu C. Exploring the repository of de novo-designed bifunctional antimicrobial peptides through deep learning. eLife 2025; 13:RP97330. [PMID: 40079572 PMCID: PMC11906162 DOI: 10.7554/elife.97330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Antimicrobial peptides (AMPs) are attractive candidates to combat antibiotic resistance for their capability to target biomembranes and restrict a wide range of pathogens. It is a daunting challenge to discover novel AMPs due to their sparse distributions in a vast peptide universe, especially for peptides that demonstrate potencies for both bacterial membranes and viral envelopes. Here, we establish a de novo AMP design framework by bridging a deep generative module and a graph-encoding activity regressor. The generative module learns hidden 'grammars' of AMP features and produces candidates sequentially pass antimicrobial predictor and antiviral classifiers. We discovered 16 bifunctional AMPs and experimentally validated their abilities to inhibit a spectrum of pathogens in vitro and in animal models. Notably, P076 is a highly potent bactericide with the minimal inhibitory concentration of 0.21 μM against multidrug-resistant Acinetobacter baumannii, while P002 broadly inhibits five enveloped viruses. Our study provides feasible means to uncover the sequences that simultaneously encode antimicrobial and antiviral activities, thus bolstering the function spectra of AMPs to combat a wide range of drug-resistant infections.
Collapse
Affiliation(s)
- Ruihan Dong
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Rongrong Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Shaanxi, China
| | - Ziyu Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Shaanxi, China
| | - Yangang Liu
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Gaomei Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Honglei Li
- Tianjin Cancer Hospital Airport Hospital, Tianjin, China
| | - Shiyuan Hou
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Shaanxi, China
| | - Xiaohan Ma
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Shaanxi, China
| | - Huarui Kang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Shaanxi, China
| | - Jing Liu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Shaanxi, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Ping Zhao
- Department of Microbiology, Second Military Medical University, Shanghai, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury of PLA, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xingan Wu
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Shaanxi, China
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Cheng Zhu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
4
|
Yan J, Siwakoti P, Shaw S, Bose S, Kokil G, Kumeria T. Porous silicon and silica carriers for delivery of peptide therapeutics. Drug Deliv Transl Res 2024; 14:3549-3567. [PMID: 38819767 PMCID: PMC11499345 DOI: 10.1007/s13346-024-01609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Peptides have gained tremendous popularity as biological therapeutic agents in recent years due to their favourable specificity, diversity of targets, well-established screening methods, ease of production, and lower cost. However, their poor physiological and storage stability, pharmacokinetics, and fast clearance have limited their clinical translation. Novel nanocarrier-based strategies have shown promise in overcoming these issues. In this direction, porous silicon (pSi) and mesoporous silica nanoparticles (MSNs) have been widely explored as potential carriers for the delivery of peptide therapeutics. These materials possess several advantages, including large surface areas, tunable pore sizes, and adjustable pore architectures, which make them attractive carriers for peptide delivery systems. In this review, we cover pSi and MSNs as drug carriers focusing on their use in peptide delivery. The review provides a brief overview of their fabrication, surface modification, and interesting properties that make them ideal peptide drug carriers. The review provides a systematic account of various studies that have utilised these unique porous carriers for peptide delivery describing significant in vitro and in vivo results. We have also provided a critical comparison of the two carriers in terms of their physicochemical properties and short-term and long-term biocompatibility. Lastly, we have concluded the review with our opinion of this field and identified key areas for future research for clinical translation of pSi and MSN-based peptide therapeutic formulations.
Collapse
Affiliation(s)
- Jiachen Yan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Prakriti Siwakoti
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Siuli Shaw
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Sudeep Bose
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201301, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Ganesh Kokil
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW, 2052, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
5
|
Zhao G, He Y, Chen Y, Jiang Y, Li C, Xiong T, Han S, He Y, Gao J, Su Y, Wang J, Wang C. Application of a derivative of human defensin 5 to treat ionizing radiation-induced enterogenic infection. JOURNAL OF RADIATION RESEARCH 2024; 65:194-204. [PMID: 38264835 PMCID: PMC10959430 DOI: 10.1093/jrr/rrad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/25/2024]
Abstract
Enterogenic infection is a common complication for patients with radiation injury and requires efficient therapeutics in the clinic. Herein, we evaluated the promising drug candidate T7E21RHD5, which is a peptide derived from intestinal Paneth cell-secreted human defensin 5. Oral administration of this peptide alleviated the diarrhea symptoms of mice that received total abdominal irradiation (TAI, γ-ray, 12 Gy) and improved survival. Pathologic analysis revealed that T7E21RHD5 elicited an obvious mitigation of ionizing radiation (IR)-induced epithelial damage and ameliorated the reduction in the levels of claudin, zonula occluden 1 and occludin, three tight junction proteins in the ileum. Additionally, T7E21RHD5 regulated the gut microbiota in TAI mice by remodeling β diversity, manifested as a reversal of the inverted proportion of Bacteroidota to Firmicutes caused by IR. T7E21RHD5 treatment also decreased the abundance of pathogenic Escherichia-Shigella but significantly increased the levels of Alloprevotella and Prevotellaceae_NK3B31, two short-chain fatty acid-producing bacterial genera in the gut. Accordingly, the translocation of enterobacteria and lipopolysaccharide to the blood, as well as the infectious inflammatory responses in the intestine after TAI, was all suppressed by T7E21RHD5 administration. Hence, this versatile antimicrobial peptide possesses promising application prospects in the treatment of IR-induced enterogenic infection.
Collapse
Affiliation(s)
- Gaomei Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yingjuan He
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yin Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yiyi Jiang
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Chenwenya Li
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Tainong Xiong
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Songling Han
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yongwu He
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Jining Gao
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Yongping Su
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| | - Cheng Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Institute of Combined Injury of PLA, Third Military Medical University, Gaotanyan Street No. 30, Shapingba District, Chongqing 400038, China
| |
Collapse
|
6
|
Yao L, Liu Q, Lei Z, Sun T. Development and challenges of antimicrobial peptide delivery strategies in bacterial therapy: A review. Int J Biol Macromol 2023; 253:126819. [PMID: 37709236 DOI: 10.1016/j.ijbiomac.2023.126819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The escalating global prevalence of antimicrobial resistance poses a critical threat, prompting concerns about its impact on public health. This predicament is exacerbated by the acute shortage of novel antimicrobial agents, a scarcity attributed to the rapid surge in bacterial resistance. This review delves into the realm of antimicrobial peptides, a diverse class of compounds ubiquitously present in plants and animals across various natural organisms. Renowned for their intrinsic antibacterial activity, these peptides provide a promising avenue to tackle the intricate challenge of bacterial resistance. However, the clinical utility of peptide-based drugs is hindered by limited bioavailability and susceptibility to rapid degradation, constraining efforts to enhance the efficacy of bacterial infection treatments. The emergence of nanocarriers marks a transformative approach poised to revolutionize peptide delivery strategies. This review elucidates a promising framework involving nanocarriers within the realm of antimicrobial peptides. This paradigm enables meticulous and controlled peptide release at infection sites by detecting dynamic shifts in microenvironmental factors, including pH, ROS, GSH, and reactive enzymes. Furthermore, a glimpse into the future reveals the potential of targeted delivery mechanisms, harnessing inflammatory responses and intricate signaling pathways, including adenosine triphosphate, macrophage receptors, and pathogenic nucleic acid entities. This approach holds promise in fortifying immunity, thereby amplifying the potency of peptide-based treatments. In summary, this review spotlights peptide nanosystems as prospective solutions for combating bacterial infections. By bridging antimicrobial peptides with advanced nanomedicine, a new therapeutic era emerges, poised to confront the formidable challenge of antimicrobial resistance head-on.
Collapse
Affiliation(s)
- Longfukang Yao
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Qianying Liu
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
7
|
Zhang W, Yang Z, Zheng J, Fu K, Wong JH, Ni Y, Ng TB, Cho CH, Chan MK, Lee MM. A Bioresponsive Genetically Encoded Antimicrobial Crystal for the Oral Treatment of Helicobacter Pylori Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301724. [PMID: 37675807 PMCID: PMC10602570 DOI: 10.1002/advs.202301724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/13/2023] [Indexed: 09/08/2023]
Abstract
Helicobacter pylori (H. pylori) causes infection in the stomach and is a major factor for gastric carcinogenesis. The application of antimicrobial peptides (AMPs) as an alternative treatment to traditional antibiotics is limited by their facile degradation in the stomach, their poor penetration of the gastric mucosa, and the cost of peptide production. Here, the design and characterization of a genetically encoded H. pylori-responsive microbicidal protein crystal Cry3Aa-MIIA-AMP-P17 is described. This designed crystal exhibits preferential binding to H. pylori, and when activated, promotes the targeted release of the AMP at the H. pylori infection site. Significantly, when the activated Cry3Aa-MIIA-AMP-P17 crystals are orally delivered to infected mice, the Cry3Aa crystal framework protects its cargo AMP against degradation, resulting in enhanced in vivo efficacy against H. pylori infection. Notably, in contrast to antibiotics, treatment with the activated crystals results in minimal perturbation of the mouse gut microbiota. These results demonstrate that engineered Cry3Aa crystals can serve as an effective platform for the oral delivery of therapeutic peptides to treat gastrointestinal diseases.
Collapse
Affiliation(s)
- Wenxiu Zhang
- School of Life Sciences and Center of Novel BiomaterialsThe Chinese University of Hong KongHong Kong999077China
| | - Zaofeng Yang
- School of Life Sciences and Center of Novel BiomaterialsThe Chinese University of Hong KongHong Kong999077China
| | - Jiale Zheng
- School of Life Sciences and Center of Novel BiomaterialsThe Chinese University of Hong KongHong Kong999077China
| | - Kaili Fu
- Department of Medicine and TherapeuticsFaculty of MedicineThe Chinese University of Hong KongHong Kong999077China
| | - Jack Ho Wong
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong999077China
- Present address:
School of Health SciencesCaritas Institute of Higher EducationHong Kong999077China
| | - Yunbi Ni
- Department of Anatomical and Cellular PathologyPrince of Wales HospitalThe Chinese University of Hong KongHong Kong999077China
| | - Tzi Bun Ng
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong999077China
| | - Chi Hin Cho
- School of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongHong Kong999077China
- Present address:
School of PharmacyUniversity of Southwest Medical UniversityLuzhou646000China
| | - Michael K. Chan
- School of Life Sciences and Center of Novel BiomaterialsThe Chinese University of Hong KongHong Kong999077China
| | - Marianne M. Lee
- School of Life Sciences and Center of Novel BiomaterialsThe Chinese University of Hong KongHong Kong999077China
| |
Collapse
|
8
|
Li B, Liao Y, Su X, Chen S, Wang X, Shen B, Song H, Yue P. Powering mesoporous silica nanoparticles into bioactive nanoplatforms for antibacterial therapies: strategies and challenges. J Nanobiotechnology 2023; 21:325. [PMID: 37684605 PMCID: PMC10485977 DOI: 10.1186/s12951-023-02093-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Bacterial infection has been a major threat to worldwide human health, in particular with the ever-increasing level of antimicrobial resistance. Given the complex microenvironment of bacterial infections, conventional use of antibiotics typically renders a low efficacy in infection control, thus calling for novel strategies for effective antibacterial therapies. As an excellent candidate for antibiotics delivery, mesoporous silica nanoparticles (MSNs) demonstrate unique physicochemical advantages in antibacterial therapies. Beyond the delivery capability, extensive efforts have been devoted in engineering MSNs to be bioactive to further synergize the therapeutic effect in infection control. In this review, we critically reviewed the essential properties of MSNs that benefit their antibacterial application, followed by a themed summary of strategies in manipulating MSNs into bioactive nanoplatforms for enhanced antibacterial therapies. The chemically functionalized platform, photo-synergized platform, physical antibacterial platform and targeting-directed platform are introduced in details, where the clinical translation challenges of these MSNs-based antibacterial nanoplatforms are briefly discussed afterwards. This review provides critical information of the emerging trend in turning bioinert MSNs into bioactive antibacterial agents, paving the way to inspire and translate novel MSNs-based nanotherapies in combating bacterial infection diseases.
Collapse
Affiliation(s)
- Biao Li
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Yan Liao
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Xiaoyu Su
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Shuiyan Chen
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Xinmin Wang
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Baode Shen
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Pengfei Yue
- Lab of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, 1688 MEILING Avenue, Nanchang, 330004, China.
| |
Collapse
|
9
|
Boggio E, Gigliotti CL, Stoppa I, Pantham D, Sacchetti S, Rolla R, Grattarola M, Monge C, Pizzimenti S, Dianzani U, Dianzani C, Battaglia L. Exploiting Nanomedicine for Cancer Polychemotherapy: Recent Advances and Clinical Applications. Pharmaceutics 2023; 15:937. [PMID: 36986798 PMCID: PMC10057931 DOI: 10.3390/pharmaceutics15030937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The most important limitations of chemotherapeutic agents are severe side effects and the development of multi-drug resistance. Recently, the clinical successes achieved with immunotherapy have revolutionized the treatment of several advanced-stage malignancies, but most patients do not respond and many of them develop immune-related adverse events. Loading synergistic combinations of different anti-tumor drugs in nanocarriers may enhance their efficacy and reduce life-threatening toxicities. Thereafter, nanomedicines may synergize with pharmacological, immunological, and physical combined treatments, and should be increasingly integrated in multimodal combination therapy regimens. The goal of this manuscript is to provide better understanding and key considerations for developing new combined nanomedicines and nanotheranostics. We will clarify the potential of combined nanomedicine strategies that are designed to target different steps of the cancer growth as well as its microenvironment and immunity interactions. Moreover, we will describe relevant experiments in animal models and discuss issues raised by translation in the human setting.
Collapse
Affiliation(s)
- Elena Boggio
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Ian Stoppa
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Deepika Pantham
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Sara Sacchetti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Roberta Rolla
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Margherita Grattarola
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Chiara Monge
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Umberto Dianzani
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
- Centro Interdipartimentale Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, Università degli Studi di Torino, 10124 Torino, Italy
| |
Collapse
|
10
|
Mehrabi MR, Soltani M, Chiani M, Raahemifar K, Farhangi A. Nanomedicine: New Frontiers in Fighting Microbial Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:483. [PMID: 36770443 PMCID: PMC9920255 DOI: 10.3390/nano13030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microbes have dominated life on Earth for the past two billion years, despite facing a variety of obstacles. In the 20th century, antibiotics and immunizations brought about these changes. Since then, microorganisms have acquired resistance, and various infectious diseases have been able to avoid being treated with traditionally developed vaccines. Antibiotic resistance and pathogenicity have surpassed antibiotic discovery in terms of importance over the course of the past few decades. These shifts have resulted in tremendous economic and health repercussions across the board for all socioeconomic levels; thus, we require ground-breaking innovations to effectively manage microbial infections and to provide long-term solutions. The pharmaceutical and biotechnology sectors have been radically altered as a result of nanomedicine, and this trend is now spreading to the antibacterial research community. Here, we examine the role that nanomedicine plays in the prevention of microbial infections, including topics such as diagnosis, antimicrobial therapy, pharmaceutical administration, and immunizations, as well as the opportunities and challenges that lie ahead.
Collapse
Affiliation(s)
- Mohammad Reza Mehrabi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran
- Advanced Bioengineering Initiative Center, Multidisciplinary International Complex, K. N. Toosi University of Technology, Tehran 14176-14411, Iran
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| | - Kaamran Raahemifar
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, PA 16801, USA
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
- School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Ali Farhangi
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran 13169-43551, Iran
| |
Collapse
|
11
|
Zhuang J, Yu Y, Lu R. Mesoporous silica nanoparticles as carrier to overcome bacterial drug resistant barriers. Int J Pharm 2023; 631:122529. [PMID: 36563796 DOI: 10.1016/j.ijpharm.2022.122529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/27/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Antibiotic resistance has become a global threat to health due to abuse of antibiotics. Lots of existing antibiotics have lost their effect on drug resistant bacteria. Moreover, the discovery of novel antibiotics becomes more and more difficult. It is necessary to develop new strategies to fight against antibiotic resistance. Nano-drug delivery systems endow old antibiotics with new vitality to defeat the antibiotic resistant barrier by protecting antibiotics against hydrolysis, increasing uptake and circumventing efflux pump. Among them, mesoporous silica nanoparticles (MSNs) are one of the most extensively investigated as carrier of antibiotics due to large drug loading capability, tunable physicochemical characteristics, and biocompatibility. MSNs can improve the delivery of antibiotics to bacteria greatly by reducing size, modifying surface, and regulating shapes. Furthermore, MSNs hybridized metal ions or metal nanoparticles exert stronger antibacterial effect by controlling the release of metal ions or increasing active oxygen species. In addition, metal capped MSNs are also able to load antibiotics to exert synergistic antibacterial effect. This paper firstly reviewed the current application of various nanomaterials as antibacterial agents, and then focused on the MSNs including the introduction of MSNs and various approaches for improving antibacterial effect of MSNs.
Collapse
Affiliation(s)
- Jie Zhuang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Yiming Yu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Rui Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
12
|
Imperlini E, Massaro F, Buonocore F. Antimicrobial Peptides against Bacterial Pathogens: Innovative Delivery Nanosystems for Pharmaceutical Applications. Antibiotics (Basel) 2023; 12:antibiotics12010184. [PMID: 36671385 PMCID: PMC9854484 DOI: 10.3390/antibiotics12010184] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
The introduction of antibiotics has revolutionized the treatment and prevention of microbial infections. However, the global spread of pathogens resistant to available antibiotics is a major concern. Recently, the WHO has updated the priority list of multidrug-resistant (MDR) species for which the discovery of new therapeutics is urgently needed. In this scenario, antimicrobial peptides (AMPs) are a new potential alternative to conventional antibiotics, as they show a low risk of developing antimicrobial resistance, thus preventing MDR bacterial infections. However, there are limitations and challenges related to the clinical impact of AMPs, as well as great scientific efforts to find solutions aimed at improving their biological activity, in vivo stability, and bioavailability by reducing the eventual toxicity. To overcome some of these issues, different types of nanoparticles (NPs) have been developed for AMP delivery over the last decades. In this review, we provide an update on recent nanosystems applied to AMPs, with special attention on their potential pharmaceutical applications for the treatment of bacterial infections. Among lipid nanomaterials, solid lipid NPs and lipid nanocapsules have been employed to enhance AMP solubility and protect peptides from proteolytic degradation. In addition, polymeric NPs, particularly nanogels, are able to help in reducing AMP toxicity and also increasing AMP loading. To boost AMP activity instead, mesoporous silica or gold NPs can be selected due to their easy surface functionalization. They have been also used as nanocarriers for different AMP combinations, thus synergistically potentiating their action against pathogens.
Collapse
|
13
|
Zhao G, Jia C, Zhu C, Fang M, Li C, Chen Y, He Y, Han S, He Y, Gao J, Wang T, Wang C, Wang J. γ-Core Guided Antibiotic Design Based on Human Enteric Defensin 5. MEMBRANES 2022; 13:51. [PMID: 36676858 PMCID: PMC9862697 DOI: 10.3390/membranes13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
An increase in the number of infections caused by resistant bacteria worldwide necessitates the development of alternatives to antibiotics. Human defensin (HD) 5 is an innate immune peptide with broad-spectrum antibacterial activity, but its complicated structure makes its preparation difficult. Herein, we truncated the HD5 structure by extracting the highly conserved γ-core motif. A structure-activity study showed that this motif was ineffective in killing bacteria in the absence of specific spatial conformation. Notably, after the introduction of two intramolecular disulfide bonds, its antibacterial activity was markedly improved. Glu and Ser residues were then replaced with Arg to create the derivative RC18, which exhibited stronger potency than HD5, particularly against methicillin-resistant S. aureus (MRSA). Mechanistically, RC18 bound to lipid A and lipoteichoic acid at higher affinities than HD5. Furthermore, RC18 was more efficient than HD5 in penetrating the bacterial membranes. Molecular dynamics simulation revealed that five Arg residues, Arg1, Arg7, Arg9, Arg15, and Arg18, mediated most of the polar interactions of RC18 with the phospholipid head groups during membrane penetration. In vivo experiments indicated that RC18 decreased MRSA colonization and dramatically improved the survival of infected mice, thus demonstrating that RC18 is a promising drug candidate to treat MRSA infections.
Collapse
Affiliation(s)
- Gaomei Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Changsheng Jia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Minchao Fang
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Chenwenya Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yingjuan He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Songling Han
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Yongwu He
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Jining Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Tao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
14
|
Ahmad A, Imran M, Sharma N. Precision Nanotoxicology in Drug Development: Current Trends and Challenges in Safety and Toxicity Implications of Customized Multifunctional Nanocarriers for Drug-Delivery Applications. Pharmaceutics 2022; 14:2463. [PMID: 36432653 PMCID: PMC9697541 DOI: 10.3390/pharmaceutics14112463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
The dire need for the assessment of human and environmental endangerments of nanoparticulate material has motivated the formulation of novel scientific tools and techniques to detect, quantify, and characterize these nanomaterials. Several of these paradigms possess enormous possibilities for applications in many of the realms of nanotoxicology. Furthermore, in a large number of cases, the limited capabilities to assess the environmental and human toxicological outcomes of customized and tailored multifunctional nanoparticles used for drug delivery have hindered their full exploitation in preclinical and clinical settings. With the ever-compounded availability of nanoparticulate materials in commercialized settings, an ever-arising popular debate has been egressing on whether the social, human, and environmental costs associated with the risks of nanomaterials outweigh their profits. Here we briefly review the various health, pharmaceutical, and regulatory aspects of nanotoxicology of engineered multifunctional nanoparticles in vitro and in vivo. Several aspects and issues encountered during the safety and toxicity assessments of these drug-delivery nanocarriers have also been summarized. Furthermore, recent trends implicated in the nanotoxicological evaluations of nanoparticulate matter in vitro and in vivo have also been discussed. Due to the absence of robust and rigid regulatory guidelines, researchers currently frequently encounter a larger number of challenges in the toxicology assessment of nanocarriers, which have also been briefly discussed here. Nanotoxicology has an appreciable and significant part in the clinical translational development as well as commercialization potential of nanocarriers; hence these aspects have also been touched upon. Finally, a brief overview has been provided regarding some of the nanocarrier-based medicines that are currently undergoing clinical trials, and some of those which have recently been commercialized and are available for patients. It is expected that this review will instigate an appreciable interest in the research community working in the arena of pharmaceutical drug development and nanoformulation-based drug delivery.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane 4102, Australia
| | - Nisha Sharma
- Division of Nephrology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
15
|
Chumponanomakun P, Niramitranon J, Chairatana P, Pongprayoon P. Molecular insights into the adsorption mechanism of E21R and T7E21R human defensin 5 on a bacterial membrane. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2086253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Phoom Chumponanomakun
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Jitti Niramitranon
- Department of Computer Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Phoom Chairatana
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Prapasiri Pongprayoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
16
|
Song K, Tang Z, Song Z, Meng S, Yang X, Guo H, Zhu Y, Wang X. Hyaluronic Acid-Functionalized Mesoporous Silica Nanoparticles Loading Simvastatin for Targeted Therapy of Atherosclerosis. Pharmaceutics 2022; 14:pharmaceutics14061265. [PMID: 35745836 PMCID: PMC9227583 DOI: 10.3390/pharmaceutics14061265] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis (AS) constitutes a major threat to human health, yet most current therapeutics are hindered in achieving desirable clinical outcomes by low bioavailability or serious side effects. Herein, we constructed an enzyme-responsive and macrophage-targeting drug delivery system (SIM@HA-MSN) which can potentially modulate the microenvironment of the atherosclerotic plaques characterized by excessive inflammation and overexpression of hyaluronidase (HAase) for precise AS treatment. More specifically, mesoporous silica nanoparticles (MSNs) were loaded with a lipid-lowering drug simvastatin (SIM) and further gated with hyaluronic acid (HA) coating, which endowed the nanosystem with HAase responsiveness and targetability to inflammatory macrophages. Our results showed that a high loading efficiency (>20%) and excellent enzyme-responsive release of SIM were simultaneously achieved for the first time by silica-based nanocarriers through formulation optimizations. Moreover, in vitro experiments confirmed that SIM@HA-MSN possessed robust targeting, anti-inflammatory, and anti-foaming effects, along with low cytotoxicity and excellent hemocompatibility. In addition, preliminary animal experiments demonstrated the as-established nanosystem had a long plasma-retention time and good biocompatibility in vivo. Taken together, SIM@HA-MSN with HA playing triple roles including gatekeeping, lesion-targeting, and long-circulating holds great potential for the management of atherosclerosis.
Collapse
Affiliation(s)
- Kechen Song
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa 999078, Macau, China; (K.S.); (Z.T.); (Z.S.); (S.M.); (X.Y.); (Y.Z.)
| | - Zhuang Tang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa 999078, Macau, China; (K.S.); (Z.T.); (Z.S.); (S.M.); (X.Y.); (Y.Z.)
| | - Zhiling Song
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa 999078, Macau, China; (K.S.); (Z.T.); (Z.S.); (S.M.); (X.Y.); (Y.Z.)
| | - Shiyu Meng
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa 999078, Macau, China; (K.S.); (Z.T.); (Z.S.); (S.M.); (X.Y.); (Y.Z.)
| | - Xiaoxue Yang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa 999078, Macau, China; (K.S.); (Z.T.); (Z.S.); (S.M.); (X.Y.); (Y.Z.)
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
- Correspondence: (H.G.); (X.W.)
| | - Yizhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa 999078, Macau, China; (K.S.); (Z.T.); (Z.S.); (S.M.); (X.Y.); (Y.Z.)
| | - Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa 999078, Macau, China; (K.S.); (Z.T.); (Z.S.); (S.M.); (X.Y.); (Y.Z.)
- Correspondence: (H.G.); (X.W.)
| |
Collapse
|
17
|
Lai Z, Yuan X, Chen H, Zhu Y, Dong N, Shan A. Strategies employed in the design of antimicrobial peptides with enhanced proteolytic stability. Biotechnol Adv 2022; 59:107962. [PMID: 35452776 DOI: 10.1016/j.biotechadv.2022.107962] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
Due to the alarming developing rate of multidrug-resistant bacterial pathogens, the development and modification of antimicrobial peptides (AMPs) are unprecedentedly active. Despite the fact that considerable efforts have been expended on the discovery and design strategies of AMPs, the clinical translation of peptide antibiotics remains inadequate. A large number of articles and reviews credited the limited success of AMPs to their poor stability in the biological environment, particularly their poor proteolytic stability. In the past forty years, various design strategies have been used to improve the proteolytic stability of AMPs, such as sequence modification, cyclization, peptidomimetics, and nanotechnology. Herein, we focus our discussion on the progress made in improving the proteolytic stability of AMPs and the principle, successes, and limitations of various anti-proteolytic design strategies. It is of prospective significance to extend current insights into the degradation-related inactivation of AMPs and also alleviate/overcome the problem.
Collapse
Affiliation(s)
- Zhenheng Lai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojie Yuan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Chen
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Yunhui Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Na Dong
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
18
|
Ahmad F, Salem-Bekhit MM, Khan F, Alshehri S, Khan A, Ghoneim MM, Wu HF, Taha EI, Elbagory I. Unique Properties of Surface-Functionalized Nanoparticles for Bio-Application: Functionalization Mechanisms and Importance in Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1333. [PMID: 35458041 PMCID: PMC9031869 DOI: 10.3390/nano12081333] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/09/2023]
Abstract
This review tries to summarize the purpose of steadily developing surface-functionalized nanoparticles for various bio-applications and represents a fascinating and rapidly growing field of research. Due to their unique properties-such as novel optical, biodegradable, low-toxicity, biocompatibility, size, and highly catalytic features-these materials are considered superior, and it is thus vital to study these systems in a realistic and meaningful way. However, rapid aggregation, oxidation, and other problems are encountered with functionalized nanoparticles, inhibiting their subsequent utilization. Adequate surface modification of nanoparticles with organic and inorganic compounds results in improved physicochemical properties which can overcome these barriers. This review investigates and discusses the iron oxide nanoparticles, gold nanoparticles, platinum nanoparticles, silver nanoparticles, and silica-coated nanoparticles and how their unique properties after fabrication allow for their potential use in a wide range of bio-applications such as nano-based imaging, gene delivery, drug loading, and immunoassays. The different groups of nanoparticles and the advantages of surface functionalization and their applications are highlighted here. In recent years, surface-functionalized nanoparticles have become important materials for a broad range of bio-applications.
Collapse
Affiliation(s)
- Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (A.K.)
| | - Mounir M. Salem-Bekhit
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (E.I.T.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Faryad Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (A.K.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (E.I.T.)
| | - Amir Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (F.K.); (A.K.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 70, Lien-Hai Road, Kaohsiung 80424, Taiwan;
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ehab I. Taha
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.A.); (E.I.T.)
| | - Ibrahim Elbagory
- College of Pharmacy, Northern Border University, Arar 1321, Saudi Arabia;
| |
Collapse
|
19
|
Chemically engineered mesoporous silica nanoparticles-based intelligent delivery systems for theranostic applications in multiple cancerous/non-cancerous diseases. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214309] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Gao X, Ding J, Liao C, Xu J, Liu X, Lu W. Defensins: The natural peptide antibiotic. Adv Drug Deliv Rev 2021; 179:114008. [PMID: 34673132 DOI: 10.1016/j.addr.2021.114008] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/28/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Defensins are a family of cationic antimicrobial peptides active against a broad range of infectious microbes including bacteria, viruses and fungi, playing important roles as innate effectors and immune modulators in immunological control of microbial infection. Their antibacterial properties and unique mechanisms of action have garnered considerable interest in developing defensins into a novel class of natural antibiotic peptides to fend off pathogenic infection by bacteria, particularly those resistant to conventional antibiotics. However, serious pharmacological and technical obstacles, some of which are unique to defensins and others are common to peptide drugs in general, have hindered the development and clinical translation of defensins as anti-infective therapeutics. To overcome them, several technologies have been developed, aiming for improved functionality, prolonged circulation time, enhanced proteolytic stability and bioavailability, and efficient and controlled delivery and release of defensins to the site of infection. Additional challenges include the alleviation of potential toxicity of defensins and their cost-effective manufacturing. In this review, we briefly introduce defensin biology, focus on various transforming strategies and practical techniques developed for defensins and their derivatives as antibacterial therapeutics, and conclude with a summation of future challenges and possible solutions.
Collapse
|
21
|
Song X, Liu P, Liu X, Wang Y, Wei H, Zhang J, Yu L, Yan X, He Z. Dealing with MDR bacteria and biofilm in the post-antibiotic era: Application of antimicrobial peptides-based nano-formulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112318. [PMID: 34474869 DOI: 10.1016/j.msec.2021.112318] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
The rapid development of multidrug-resistant (MDR) bacteria due to the improper and overuse of antibiotics and the ineffective performance of antibiotics against the difficult-to-treat biofilm-related infections (BRIs) have urgently called for alternative antimicrobial agents and strategies in combating bacterial infections. Antimicrobial peptides (AMPs), owing to their compelling antimicrobial activity against MDR bacteria and BRIs without causing bacteria resistance, have attracted extensive attention in the research field. With the development of nanomaterial-based drug delivery strategies, AMPs-based nano-formulations have significantly improved the therapeutic effects of AMPs by ameliorating their hydrolytic stability, half-life in vivo, and solubility as well as reducing the cytotoxicity and hemolysis, etc. This review has comprehensively summarized the application AMPs-based nano-formulation in various bacterial infections models, including bloodstream infections (specifically sepsis), pulmonary infections, chronic wound infections, gastrointestinal infections, among others. The design of the nanomaterial-based drug delivery systems and the therapeutic effects of the AMPs-based nano-formulations in literature have been categorized and in details discussed. Overall, this review provides insights into the advantages and disadvantages of the current developed AMPs-based nano-formulations in literature for the treatment of bacterial infections, bringing inspirations and suggestions for their future design in the way towards clinical translation.
Collapse
Affiliation(s)
- Xinyu Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Pengyan Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaohu Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Huichao Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Jingwen Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
22
|
Towards the Enhancement of Essential Oil Components' Antimicrobial Activity Using New Zein Protein-Gated Mesoporous Silica Microdevices. Int J Mol Sci 2021; 22:ijms22073795. [PMID: 33917595 PMCID: PMC8038806 DOI: 10.3390/ijms22073795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/26/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The development of new food preservatives is essential to prevent foodborne outbreaks or food spoilage due to microbial growth, enzymatic activity or oxidation. Furthermore, new compounds that substitute the commonly used synthetic food preservatives are needed to stifle the rising problem of microbial resistance. In this scenario, we report herein, as far as we know, for the first time the use of the zein protein as a gating moiety and its application for the controlled release of essential oil components (EOCs). The design of microdevices consist of mesoporous silica particles loaded with essential oils components (thymol, carvacrol and cinnamaldehyde) and functionalized with the zein (prolamin) protein found in corn as a molecular gate. The zein protein grafted on the synthesized microdevices is degraded by the proteolytic action of bacterial enzymatic secretions with the consequent release of the loaded essential oil components efficiently inhibiting bacterial growth. The results allow us to conclude that the new microdevice presented here loaded with the essential oil component cinnamaldehyde improved the antimicrobial properties of the free compound by decreasing volatility and increasing local concentration.
Collapse
|
23
|
Thapa RK, Diep DB, Tønnesen HH. Nanomedicine-based antimicrobial peptide delivery for bacterial infections: recent advances and future prospects. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00525-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
Background
Antimicrobial peptides (AMPs) have gained wide interest as viable alternatives to antibiotics owing to their potent antimicrobial effects and the low propensity of resistance development. However, their physicochemical properties (solubility, charge, hydrophobicity/hydrophilicity), stability issues (proteolytic or enzymatic degradation, aggregation, chemical degradation), and toxicities (interactions with blood components or cellular toxicities) limit their therapeutic applications.
Area covered
Nanomedicine-based therapeutic delivery is an emerging concept. The AMP loaded nanoparticles have been prepared and investigated for their antimicrobial effects. In this review, we will discuss different nanomedicine-based AMP delivery systems including metallic nanoparticles, lipid nanoparticles, polymeric nanoparticles, and their hybrid systems along with their future prospects for potent antimicrobial efficacy.
Expert opinion
Nanomedicine-based AMP delivery is a recent approach to the treatment of bacterial infections. The advantageous properties of nanoparticles including the enhancement of AMP stability, controlled release, and targetability make them suitable for the augmentation of AMP activity. Modifications in the nanomedicine-based approach are required to overcome the problems of nanoparticle instability, shorter residence time, and toxicity. Future rigorous studies for both the AMP loaded nanoparticle preparation and characterization, and detailed evaluations of their in vitro and in vivo antimicrobial effects and toxicities, are essential.
Collapse
|
24
|
Kuo PC, Lin ZX, Wu TY, Hsu CH, Lin HP, Wu TS. Effects of morphology and pore size of mesoporous silicas on the efficiency of an immobilized enzyme. RSC Adv 2021; 11:10010-10017. [PMID: 35423525 PMCID: PMC8695390 DOI: 10.1039/d1ra01358k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
An investigation is performed into the efficiency of the Streptomyces griseus HUT 6037 enzyme immobilized in three different mesoporous silicas, namely mesoporous silica film, mesocellular foam, and rod-like SBA-15. It is shown that for all three supports, the pH value changes the surface charge and charge density and hence determines the maximum loading capacity of the enzyme. The products of the enzyme hydrolytic reaction are analyzed by 1H-NMR. The results show that among the three silica supports, the mesoporous silica film (with a channel length in the range of 60–100 nm) maximizes the accessibility of the immobilized enzyme. The loading capacity of the enzyme is up to 95% at pH 7 and the activity of the immobilized enzyme is maintained for more than 15 days when using a silica film support. The order of the activity of the enzyme immobilized in different mesoporous silica supports is: mesoporous silica film > mesocellular foam > rod-like SBA-15. Furthermore, the immobilized enzyme can be easily separated from the reaction solution via simple filtration or centrifugation methods and re-used for hydrolytic reaction as required. Mesoporous silica films were used as supports with high loading capacity and enzyme activity.![]()
Collapse
Affiliation(s)
- Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University Tainan 701 Taiwan +886-6-2740552 +886-6-2747538
| | - Zhi-Xun Lin
- Department of Chemistry, National Cheng Kung University Tainan 701 Taiwan +886-6-2757575 ext. 65342
| | - Tzi-Yi Wu
- Department of Chemical & Materials Engineering, National Yunlin University of Science and Technology Yunlin 644 Taiwan
| | - Chun-Han Hsu
- General Education Center, National Tainan Junior College of Nursing Tainan 700 Taiwan
| | - Hong-Ping Lin
- Department of Chemistry, National Cheng Kung University Tainan 701 Taiwan +886-6-2757575 ext. 65342
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University Tainan 701 Taiwan +886-6-2740552 +886-6-2747538.,Department of Pharmacy, College of Pharmacy and Health Care, Tajen University Pingtung 907 Taiwan
| |
Collapse
|
25
|
Tang Y, Luo K, Chen Y, Chen Y, Zhou R, Chen C, Tan J, Deng M, Dai Q, Yu X, Liu J, Zhang C, Wu W, Xu J, Dong S, Luo F. Phosphorylation inhibition of protein-tyrosine phosphatase 1B tyrosine-152 induces bone regeneration coupled with angiogenesis for bone tissue engineering. Bioact Mater 2021; 6:2039-2057. [PMID: 33511306 PMCID: PMC7809253 DOI: 10.1016/j.bioactmat.2020.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/06/2020] [Accepted: 12/25/2020] [Indexed: 12/26/2022] Open
Abstract
A close relationship has been reported to exist between cadherin-mediated cell–cell adhesion and integrin-mediated cell mobility, and protein tyrosine phosphatase 1B (PTP1B) may be involved in maintaining this homeostasis. The stable residence of mesenchymal stem cells (MSCs) and endothelial cells (ECs) in their niches is closely related to the regulation of PTP1B. However, the exact role of the departure of MSCs and ECs from their niches during bone regeneration is largely unknown. Here, we show that the phosphorylation state of PTP1B tyrosine-152 (Y152) plays a central role in initiating the departure of these cells from their niches and their subsequent recruitment to bone defects. Based on our previous design of a PTP1B Y152 region-mimicking peptide (152RM) that significantly inhibits the phosphorylation of PTP1B Y152, further investigations revealed that 152RM enhanced cell migration partly via integrin αvβ3 and promoted MSCs osteogenic differentiation partly by inhibiting ATF3. Moreover, 152RM induced type H vessels formation by activating Notch signaling. Demineralized bone matrix (DBM) scaffolds were fabricated with mesoporous silica nanoparticles (MSNs), and 152RM was then loaded onto them by electrostatic adsorption. The DBM-MSN/152RM scaffolds were demonstrated to induce bone formation and type H vessels expansion in vivo. In conclusion, our data reveal that 152RM contributes to bone formation by coupling osteogenesis with angiogenesis, which may offer a potential therapeutic strategy for bone defects. PTP1B plays a dual regulatory role in cadherin- and integrin-related pathways. Inhibition of PTP1B Y152 phosphorylation enhances the departure of MSCs from the stem cell niche. DBM-MSN/152RM scaffolds coordinate the recruitment of MSCs and ECs. DBM-MSN/152RM scaffolds promote bone regeneration and angiogenesis in bone defects.
Collapse
Affiliation(s)
- Yong Tang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China.,Department of Orthopaedics, 72nd Group Army Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Keyu Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Rui Zhou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Can Chen
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiulin Tan
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Moyuan Deng
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qijie Dai
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xueke Yu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian Liu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chengmin Zhang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenjie Wu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Fei Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
26
|
Pujara N, Giri R, Wong KY, Qu Z, Rewatkar P, Moniruzzaman M, Begun J, Ross BP, McGuckin M, Popat A. pH - Responsive colloidal carriers assembled from β-lactoglobulin and Epsilon poly-L-lysine for oral drug delivery. J Colloid Interface Sci 2020; 589:45-55. [PMID: 33450459 DOI: 10.1016/j.jcis.2020.12.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Site specific oral delivery of many biopharmaceutical classification system (BCS) class II and IV drugs is challenging due to their poor solubility, low permeability and degradation in the gastrointestinal tract. Whilst colloidal carriers have been used to improve the bioavailability of such drugs, most nanocarriers based drug delivery systems suffer from multiple disadvantages, including low encapsulation efficiency (liposomes, polymeric nanoparticles), complex synthesis methods (silica, silicon-based materials) and poorly understood biodegradability (inorganic nanoparticles). Herein, a novel pH responsive nanocolloids were self-assembled using natural compounds such as bovine β-lactoglobulin (BLG) and succinylated β-lactoglobulin (succ. BLG) cross-linked with epsilon poly l-lysine (BCEP and BCP), and found to possess high loading capacity, high aqueous solubility and site-specific oral delivery of a poorly soluble nutraceutical (curcumin), improving its physicochemical properties and biological activity in-vitro and ex-vivo. Our optimized synthesis formed colloids of around 200 nm which were capable of encapsulating curcumin with ~100% encapsulation efficiency and ~10% w/w drug loading. By forming nanocomplexes of curcumin with BLG and succ. BLG, the aqueous solubility of curcumin was markedly increased by ~160-fold and ~86-fold, respectively. Encapsulation with BLG increased the solubility, whereas succ. BLG prevent release of encapsulated curcumin when subjected to gastric fluids as it is resistant to breakdown on exposure to pepsin at acidic pH. In conditions mimicking the small intestine, Succ. BLG was more soluble resulting in sustained release of the encapsulated drug at pH 7.4. Additionally, crosslinking succ. BLG with E-PLL significantly enhanced curcumin's permeability in an in-vitro Caco-2 cell monolayer model compared to curcumin solution (dissolved in 1% DMSO), or non-crosslinked BLG/succ. and BLG. In a mouse-derived intestinal epithelial 3D organoid culture stimulated with IL-1β, BLG-CUR and crosslinked BCEP nanoparticles reduced the production of inflammatory cytokines and chemokines such as Tnfα and Cxcl10 more than curcumin solution or suspension while these nanoparticles were non-toxic to organoids. Overall this work demonstrates the promise of nutraceutical-based hybrid self-assembled colloidal system to protect hydrophobic drugs from harsh gastrointestinal conditions and improve their solubility, dissolution, permeability and biological activity.
Collapse
Affiliation(s)
- Naisarg Pujara
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Rabina Giri
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Kuan Yau Wong
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Zhi Qu
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Prarthana Rewatkar
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Md Moniruzzaman
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Jakob Begun
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia; Inflammatory Bowel Disease Group, Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Benjamin P Ross
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Michael McGuckin
- Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, VIC 3010, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Mater Research Institute - The University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
27
|
Zhao Q, Wang Y, Zhang W, Wang Y, Wang S. Succinylated casein functionalized mesoporous silica nanoplatforms to overcome multiple gastrointestinal barriers. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Immunoregulatory and Antimicrobial Activity of Bovine Neutrophil β-Defensin-5-Loaded PLGA Nanoparticles against Mycobacterium bovis. Pharmaceutics 2020; 12:pharmaceutics12121172. [PMID: 33271900 PMCID: PMC7760669 DOI: 10.3390/pharmaceutics12121172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/28/2023] Open
Abstract
Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis complex imposing a high zoonotic threat to human health. The limited efficacy of BCG (Bacillus Calmette-Guérin) and upsurges of drug-resistant tuberculosis require new effective vaccination approaches and anti-TB drugs. Poly (lactic-co-glycolic acid) (PLGA) is a preferential drug delivery system candidate. In this study, we formulated PLGA nanoparticles (NPs) encapsulating the recombinant protein bovine neutrophil β-defensin-5 (B5), and investigated its role in immunomodulation and antimicrobial activity against M. bovis challenge. Using the classical water-oil-water solvent-evaporation method, B5-NPs were prepared, with encapsulation efficiency of 85.5% ± 2.5%. These spherical NPs were 206.6 ± 26.6 nm in diameter, with a negatively charged surface (ζ-potential -27.1 ± 1.5 mV). The encapsulated B5 protein from B5-NPs was released slowly under physiological conditions. B5 or B5-NPs efficiently enhanced the secretion of tumor necrosis factor α (TNF-α), interleukin (IL)-1β and IL-10 in J774A.1 macrophages. B5-NPs-immunized mice showed significant increases in the production of TNF-α and immunoglobulin A (IgA) in serum, and the proportion of CD4+ T cells in spleen compared with B5 alone. In immunoprotection studies, B5-NPs-immunized mice displayed significant reductions in pulmonary inflammatory area, bacterial burden in the lungs and spleen at 4-week after M. bovis challenge. In treatment studies, B5, but not B5-NPs, assisted rifampicin (RIF) with inhibition of bacterial replication in the lungs and spleen. Moreover, B5 alone also significantly reduced the bacterial load in the lungs and spleen. Altogether, our findings highlight the significance of the B5-PLGA NPs in terms of promoting the immune effect of BCG and the B5 in enhancing the therapeutic effect of RIF against M. bovis.
Collapse
|
29
|
Wang C, Wang S, Li D, Wei DQ, Zhao J, Wang J. Human Intestinal Defensin 5 Inhibits SARS-CoV-2 Invasion by Cloaking ACE2. Gastroenterology 2020; 159:1145-1147.e4. [PMID: 32437749 PMCID: PMC7211585 DOI: 10.1053/j.gastro.2020.05.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Shaobo Wang
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Daixi Li
- Institute of Biothermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; Peng Cheng Laboratory, Shenzhen, China.
| | - Jinghong Zhao
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
30
|
Li Z, Mu Y, Peng C, Lavin MF, Shao H, Du Z. Understanding the mechanisms of silica nanoparticles for nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1658. [PMID: 32602269 PMCID: PMC7757183 DOI: 10.1002/wnan.1658] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
Abstract
As a consequence of recent progression in biomedicine and nanotechnology, nanomedicine has emerged rapidly as a new discipline with extensive application of nanomaterials in biology, medicine, and pharmacology. Among the various nanomaterials, silica nanoparticles (SNPs) are particularly promising in nanomedicine applications due to their large specific surface area, adjustable pore size, facile surface modification, and excellent biocompatibility. This paper reviews the synthesis of SNPs and their recent usage in drug delivery, biomedical imaging, photodynamic and photothermal therapy, and other applications. In addition, the possible adverse effects of SNPs in nanomedicine applications are reviewed from reported in vitro and in vivo studies. Finally, the potential opportunities and challenges for the future use of SNPs are discussed. This article is categorized under:Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies
Collapse
Affiliation(s)
- Ziyuan Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yingwen Mu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Cheng Peng
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, Queensland, Australia
| | - Martin F Lavin
- University of Queensland Centre for Clinical Research (UQCCR), The University of Queensland, Brisbane, Queensland, Australia
| | - Hua Shao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongjun Du
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
31
|
Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY. Nano-Based Drug Delivery or Targeting to Eradicate Bacteria for Infection Mitigation: A Review of Recent Advances. Front Chem 2020; 8:286. [PMID: 32391321 PMCID: PMC7193053 DOI: 10.3389/fchem.2020.00286] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/23/2020] [Indexed: 12/14/2022] Open
Abstract
Pathogenic bacteria infection is a major public health problem due to the high morbidity and mortality rates, as well as the increased expenditure on patient management. Although there are several options for antimicrobial therapy, their efficacy is limited because of the occurrence of drug-resistant bacteria. Many conventional antibiotics have failed to show significant amelioration in overall survival of infectious patients. Nanomedicine for delivering antibiotics provides an opportunity to improve the efficiency of the antibacterial regimen. Nanosystems used for antibiotic delivery and targeting to infection sites render some benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged antibiotic half-life, tissue targeting, and minimal adverse effects. The nanocarriers' sophisticated material engineering tailors the controllable physicochemical properties of the nanoparticles for bacterial targeting through passive or active targeting. In this review, we highlight the recent progress on the development of antibacterial nanoparticles loaded with antibiotics. We systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for bacterial eradication. Passive targeting by modulating the nanoparticle structure and the physicochemical properties is an option for efficient drug delivery to the bacteria. In addition, active targeting, such as magnetic hyperthermia induced by iron oxide nanoparticles, is another efficient way to deliver the drugs to the targeted site. The nanoparticles are also designed to respond to the change in environment pH or enzymes to trigger the release of the antibiotics. This article offers an overview of the benefits of antibacterial nanosystems for treating infectious diseases.
Collapse
Affiliation(s)
- Yuan-Chieh Yeh
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung City, Taiwan
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming University, Taipei, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung City, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan City, Taiwan
- Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Shih-Chun Yang
- Department of Cosmetic Science, Providence University, Taichung City, Taiwan
| | - Chin-Chang Chen
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Keelung City, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Jia-You Fang
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan City, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| |
Collapse
|