1
|
Zhong H, Jiang C, Zou J, Zhu G, Cheng M, Huang Y. Self-assembly of CuAuTA nanozymes for intelligent detection of ginkgolic acids. Anal Bioanal Chem 2024; 416:6091-6102. [PMID: 38416157 DOI: 10.1007/s00216-024-05221-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/20/2024] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
Toxic ginkgolic acids (GAs) are a challenge for Ginkgo biloba-related food. Although a detection method for GAs is available, bulky instruments limit the field testing of GAs. Herein, by assembling gold nanoclusters with copper tannic acid (CuTA), CuAuTA nanocomposites were designed as peroxidase mimics for the colorimetric determination of GAs. Compared with single CuTA, the obtained CuAuTA nanocomposites possessed enhanced peroxidase-like properties. Based on the inhibitory effect of GAs for the catalytic activity of CuAuTA nanozymes, CuAuTA could be utilized for the colorimetric sensing of GAs with a low limit of quantitation of 0.17 μg mL-1. Using a smartphone and the ImageJ software in conjunction, a nanozyme-based intelligent detection platform was developed with a detection limit of 0.86 μg mL-1. This sensing system exhibited good selectivity against other potential interferents. Experimental data demonstrated that GAs might bind to the surface of CuAuTA, blocking the catalytically active sites and resulting in decreased catalytic activity. Our CuAuTA nanozyme-based system could also be applied to detect real ginkgo nut and ginkgo powder samples with recoveries of 93.12-111.6% and relative standard deviations less than 0.3%. Our work may offer a feasible strategy for the determination of GAs and expand the application of nanozymes in food safety detection.
Collapse
Affiliation(s)
- Huimin Zhong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Cong Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Jiahui Zou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Guancheng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Mengyue Cheng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Materón EM, Gómez FR, Almeida MB, Shimizu FM, Wong A, Teodoro KBR, Silva FSR, Lima MJA, Angelim MKSC, Melendez ME, Porras N, Vieira PM, Correa DS, Carrilho E, Oliveira O, Azevedo RB, Goncalves D. Colorimetric Detection of SARS-CoV-2 Using Plasmonic Biosensors and Smartphones. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54527-54538. [PMID: 36454041 PMCID: PMC9728479 DOI: 10.1021/acsami.2c15407] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/08/2022] [Indexed: 05/27/2023]
Abstract
Low-cost, instrument-free colorimetric tests were developed to detect SARS-CoV-2 using plasmonic biosensors with Au nanoparticles functionalized with polyclonal antibodies (f-AuNPs). Intense color changes were noted with the naked eye owing to plasmon coupling when f-AuNPs form clusters on the virus, with high sensitivity and a detection limit of 0.28 PFU mL-1 (PFU stands for plaque-forming units) in human saliva. Plasmon coupling was corroborated with computer simulations using the finite-difference time-domain (FDTD) method. The strategies based on preparing plasmonic biosensors with f-AuNPs are robust to permit SARS-CoV-2 detection via dynamic light scattering and UV-vis spectroscopy without interference from other viruses, such as influenza and dengue viruses. The diagnosis was made with a smartphone app after processing the images collected from the smartphone camera, measuring the concentration of SARS-CoV-2. Both image processing and machine learning algorithms were found to provide COVID-19 diagnosis with 100% accuracy for saliva samples. In subsidiary experiments, we observed that the biosensor could be used to detect the virus in river waters without pretreatment. With fast responses and requiring small sample amounts (only 20 μL), these colorimetric tests can be deployed in any location within the point-of-care diagnosis paradigm for epidemiological control.
Collapse
Affiliation(s)
- Elsa M. Materón
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Faustino R. Gómez
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| | - Mariana B. Almeida
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
- National Institute of Science and
Technology in Bioanalytics - INCTBio, 13083-970Campinas, SP,
Brazil
| | - Flavio M. Shimizu
- Department of Applied Physics, “Gleb
Wataghin” Institute of Physics (IFGW), University of Campinas
(UNICAMP), 13083-859Campinas, SP, Brazil
| | - Ademar Wong
- Department of Chemistry, Federal
University of São Carlos (UFSCar), 13560-970São Carlos,
São Paulo, Brazil
| | - Kelcilene B. R. Teodoro
- Nanotechnology National Laboratory for Agriculture,
Embrapa Instrumentation, 13560-970São Carlos, SP,
Brazil
| | - Filipe S. R. Silva
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Manoel J. A. Lima
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
| | - Monara Kaelle S. C. Angelim
- Department of Genetics Evolution, Microbiology, and
Immunology, Institute of Biology, University of Campinas,
13083-970Campinas, SP, Brazil
| | - Matias E. Melendez
- Molecular Carcinogenesis Program,
National Cancer Institute, 20231-050Rio de Janeiro, RJ,
Brazil
| | - Nelson Porras
- Physics Department, del Valle
University, AA 25360Cali, Colombia
| | - Pedro M. Vieira
- Department of Genetics Evolution, Microbiology, and
Immunology, Institute of Biology, University of Campinas,
13083-970Campinas, SP, Brazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture,
Embrapa Instrumentation, 13560-970São Carlos, SP,
Brazil
| | - Emanuel Carrilho
- São Carlos Institute of Chemistry,
University of São Paulo, 13566-590São Carlos,
SP, Brazil
- National Institute of Science and
Technology in Bioanalytics - INCTBio, 13083-970Campinas, SP,
Brazil
| | - Osvaldo
N. Oliveira
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| | - Ricardo B. Azevedo
- Laboratory of Nanobiotechnology, Department of Genetics
and Morphology, Institute of Biological Sciences, University of
Brasilia, 70910-900Brasilia, DF, Brazil
| | - Débora Goncalves
- São Carlos Institute of Physics,
University of São Paulo, P.O Box 369,
13560-970São Carlos, SP, Brazil
| |
Collapse
|
3
|
Zhang Y, Yan H, Su R, Li P, Wen F, Lv Y, Cai J, Su W. Photoactivated multifunctional nanoplatform based on lysozyme-Au nanoclusters-curcumin conjugates with FRET effect and multiamplified antimicrobial activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Kaur S, Bari NK, Sinha S. Varying protein architectures in 3-dimensions for scaffolding and modulating properties of catalytic gold nanoparticles. Amino Acids 2022; 54:441-454. [PMID: 35103826 DOI: 10.1007/s00726-022-03127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/13/2022] [Indexed: 11/01/2022]
Abstract
Fabrication and development of nanoscale materials with tunable structural and functional properties require a dynamic arrangement of nanoparticles on architectural templates. The function of nanoparticles not only depends on the property of the nanoparticles but also on their spatial orientations. Proteins with self-assembling properties which can be genetically engineered to varying architectural designs for scaffolds can be used to develop different orientations of nanoparticles in three dimensions. Here, we report the use of naturally self-assembling bacterial micro-compartment shell protein (PduA) assemblies in 2D and its single-point mutant variant (PduA[K26A]) in 3D architectures for the reduction and fabrication of gold nanoparticles. Interestingly, the different spatial organization of gold nanoparticles resulted in a smaller size in the 3D architect scaffold. Here, we observed a two-fold increase in catalytic activity and six-fold higher affinity toward TMB (3,3',5,5'-tetramethylbenzidine) substrate as a measure of higher peroxidase activity (nanozymatic) in the case of PduA[K26A] 3D scaffold. This approach demonstrates that the hierarchical organization of scaffold enables the fine-tuning of nanoparticle properties, thus paving the way toward the design of new nanoscale materials.
Collapse
Affiliation(s)
- Simerpreet Kaur
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab, 140306, India
| | - Naimat K Bari
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab, 140306, India
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab, 140306, India.
| |
Collapse
|
5
|
Abstract
Surface-enhanced Raman scattering (SERS), a powerful technique for trace molecular detection, depends on chemical and electromagnetic enhancements. While recent advances in instrumentation and substrate design have expanded the utility, reproducibility, and quantitative capabilities of SERS, some challenges persist. In this review, advances in quantitative SERS detection are discussed as they relate to intermolecular interactions, surface selection rules, and target molecule solubility and accessibility. After a brief introduction to Raman scattering and SERS, impacts of surface selection rules and enhancement mechanisms are discussed as they relate to the observation of activation and deactivation of normal Raman modes in SERS. Next, experimental conditions that can be used to tune molecular affinity to and density near SERS substrates are summarized and considered while tuning these parameters are conveyed. Finally, successful examples of quantitative SERS detection are discussed, and future opportunities are outlined. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ryan D Norton
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA;
| | - Hoa T Phan
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA;
| | | | - Amanda J Haes
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA;
| |
Collapse
|
6
|
Fagúndez P, Botasini S, Tosar JP, Méndez E. Systematic process evaluation of the conjugation of proteins to gold nanoparticles. Heliyon 2021; 7:e07392. [PMID: 34307927 PMCID: PMC8258641 DOI: 10.1016/j.heliyon.2021.e07392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
The present work addresses some fundamental aspects in the preparation of protein-conjugated gold nanoparticles, in order to ensure an appropriate final product. Ten broadly available and/or easy to implement analytical tools were benchmarked and compared in their capacity to provide reliable and conclusive information for each step of the procedure. These techniques included transmission electron microscopy, UV/VIS spectroscopy, dynamic light scattering, zeta-potential, Fourier-transformed infrared spectroscopy, colloidal stability titration, end-point colloidal stability analysis, cyclic voltammetry, agarose gel electrophoresis and size-exclusion chromatography (SEC). Four different proteins widely used as adaptors or blocking agents were tested, together with 13 nm gold nanoparticles containing different surface chemistries. Among all tested techniques, some of the least popular among nanomaterial scientists probed to be the most informative, including colloidal stability, gel electrophoresis and SEC; the latter being also an efficient purification procedure. These three techniques provide low-cost, low time consuming, sensitive and robust ways to assess the success of the nanoparticle bioconjugation steps, especially when used in adequate combinations.
Collapse
Affiliation(s)
- Pablo Fagúndez
- Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay.,Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Uruguay
| | - Santiago Botasini
- Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Juan Pablo Tosar
- Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| | - Eduardo Méndez
- Laboratorio de Biomateriales, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400, Montevideo, Uruguay
| |
Collapse
|
7
|
Chen CY, Ni CC, Wu RN, Kuo SY, Li CH, Kiang YW, Yang CC. Surface plasmon coupling effects on the förster resonance energy transfer from quantum dot into rhodamine 6G. NANOTECHNOLOGY 2021; 32:295202. [PMID: 33848997 DOI: 10.1088/1361-6528/abf775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Rhodamine 6G (R6G) molecules linked CdZnSeS/ZnS green-emitting quantum dots (QDs) are self-assembled onto Ag nanoparticles (NPs) for studying the surface plasmon (SP) coupling effect on the Förster resonance energy transfer (FRET) process from QD into R6G. SP coupling can enhance the emission efficiency of QD such that FRET has to compete with QD emission for transferring energy into R6G. It is found that FRET efficiency is reduced under the SP coupling condition. Although R6G emission efficiency can also be enhanced through SP coupling when it is directly linked onto Ag NP, the enhancement decreases when R6G is linked onto QD and then the QD-R6G complex is self-assembled onto Ag NP. In particular, R6G emission efficiency can be reduced through SP coupling when the number of R6G molecules linked onto a QD is high. A rate-equation model is built for resembling the measured photoluminescence decay profiles and providing us with more detailed explanations for the observed FRET and SP coupling behaviors.
Collapse
Affiliation(s)
- Chien-Yu Chen
- Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, No. 1, section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Chia-Chun Ni
- Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, No. 1, section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Ruei-Nan Wu
- Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, No. 1, section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Sheng-Yang Kuo
- Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, No. 1, section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Chia-Hao Li
- Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, No. 1, section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - Yean-Woei Kiang
- Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, No. 1, section 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - C C Yang
- Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, No. 1, section 4, Roosevelt Road, Taipei, 10617, Taiwan
| |
Collapse
|
8
|
Isolation and Self-Association Studies of Beta-Lactoglobulin. Int J Mol Sci 2020; 21:ijms21249711. [PMID: 33352705 PMCID: PMC7766286 DOI: 10.3390/ijms21249711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate isolated β-lactoglobulin (β-LG) from the whey protein isolate (WPI) solution using the column chromatography with SP Sephadex. The physicochemical characterization (self-association, the pH stability in various salt solutions, the identification of oligomeric forms) of the protein obtained have been carried out. The electrophoretically pure β-LG fraction was obtained at pH 4.8. The fraction was characterized by the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/TOF MS) technique. The use of the HCCA matrix indicated the presence of oligomeric β-LG forms, while the SA and DHB matrices enabled the differentiation of A and B isoforms in the sample. The impact of sodium chloride, potassium chloride, ammonium sulfate, and sodium citrate in dispersion medium on β-LG electrophoretic stability in solution was also studied. Type of the dispersion medium led to the changes in the isoelectric point of protein. Sodium citrate stabilizes protein in comparison to ammonium sulfate. Additionally, the potential of capillary electrophoresis (CE) with UV detection using bare fused capillary to monitor β-LG oligomerization was discussed. Obtained CE data were further compared by the asymmetric flow field flow fractionation coupled with the multi-angle light scattering detector (AF4-MALS). It was shown that the β-LG is a monomer at pH 3.0, dimer at pH 7.0. At pH 5.0 (near the isoelectric point), oligomers with structures from dimeric to octameric are formed. However, the appearance of the oligomers equilibrium is dependent on the concentration of protein. The higher quantity of protein leads to the formation of the octamer. The far UV circular dichroism (CD) spectra carried out at pH 3.0, 5.0, and 7.0 confirmed that β-sheet conformation is dominant at pH 3.0, 5.0, while at pH 7.0, this conformation is approximately in the same quantity as α-helix and random structures.
Collapse
|
9
|
Nurakhmetova ZA, Azhkeyeva AN, Klassen IA, Tatykhanova GS. Synthesis and Stabilization of Gold Nanoparticles Using Water-Soluble Synthetic and Natural Polymers. Polymers (Basel) 2020; 12:E2625. [PMID: 33171660 PMCID: PMC7695247 DOI: 10.3390/polym12112625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/22/2022] Open
Abstract
Gold nanoparticles (AuNPs) were synthesized and stabilized using the one-pot method and growth seeding, through utilization of synthetic polymers, including poly(N-vinylpyrrolidone) (PVP), poly(ethylene glycol) (PEG), and poly(vinylcaprolactame) (PVCL), as well as natural polysaccharides, including gellan, welan, pectin, and κ-carrageenan. The absorption spectra, average hydrodynamic size, ζ-potential, and morphology of the gold nanoparticles were evaluated based on various factors, such as polymer concentration, molecular mass of polymers, temperature, and storage time. The optimal polymer concentration for stabilization of AuNPs was found to be 4.0 wt % for PVP, 0.5 wt % for gellan, and 0.2 wt % for pectin, welan, and κ-carrageenan. The values of the ζ-potential of polymer-stabilized AuNPs show that their surfaces are negatively charged. Most of the AuNPs are polydisperse particles, though very monodisperse AuNPs were detected in the presence of a 0.5 wt % gellan solution. At a constant polymer concentration of PVP (4 wt %), the average size of the PVP-AuNPs decreased with the decrease of molecular weight, and in the following order: PVP 350 kDa (~25 nm) > PVP 40 kDa (~8 nm) > PVP 10 kDa (~4 nm). The combination of Fourier-transform infrared spectroscopy (FTIR) and Raman spectroscopy revealed that the functional groups of polymers that are responsible for stabilization of AuNPs are lactam ring in PVP, carboxylic groups in gellan and welan, esterified carboxylic groups in pectin, and SO2 groups in κ-carrageenan. Viscometric and proton nuclear magnetic resonance (1H NMR) spectroscopic measurements showed that the temperature-dependent change in the size of AuNPs, and the gradual increase of the intensity of AuNPs at 550 nm in the presence of gellan, is due to the rigid and disordered conformation of gellan that affects the stabilization of AuNPs. The AuNPs synthesized in the presence of water-soluble polymers were stable over a period of 36 days. Preliminary results on the synthesis and characterization of gold nanorods stabilized by polymers are also presented.
Collapse
Affiliation(s)
- Zhanara A. Nurakhmetova
- Institute of Polymer Materials and Technology, Almaty 050013, Kazakhstan; (A.N.A.); (I.A.K.); (G.S.T.)
| | - Aiganym N. Azhkeyeva
- Institute of Polymer Materials and Technology, Almaty 050013, Kazakhstan; (A.N.A.); (I.A.K.); (G.S.T.)
| | - Ivan A. Klassen
- Institute of Polymer Materials and Technology, Almaty 050013, Kazakhstan; (A.N.A.); (I.A.K.); (G.S.T.)
| | - Gulnur S. Tatykhanova
- Institute of Polymer Materials and Technology, Almaty 050013, Kazakhstan; (A.N.A.); (I.A.K.); (G.S.T.)
- Laboratory of Engineering Profile, Satbayev University, Almaty 050013, Kazakhstan
| |
Collapse
|
10
|
Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proc Natl Acad Sci U S A 2020; 117:27906-27915. [PMID: 33106394 PMCID: PMC7668081 DOI: 10.1073/pnas.2012700117] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Soft microfluidic systems that capture, store, and perform biomarker analysis of microliter volumes of sweat, in situ, as it emerges from the surface of the skin, represent an emerging class of wearable technology with powerful capabilities that complement those of traditional biophysical sensing devices. Recent work establishes applications in the real-time characterization of sweat dynamics and sweat chemistry in the context of sports performance and healthcare diagnostics. This paper presents a collection of advances in biochemical sensors and microfluidic designs that support multimodal operation in the monitoring of physiological signatures directly correlated to physical and mental stresses. These wireless, battery-free, skin-interfaced devices combine lateral flow immunoassays for cortisol, fluorometric assays for glucose and ascorbic acid (vitamin C), and digital tracking of skin galvanic responses. Systematic benchtop evaluations and field studies on human subjects highlight the key features of this platform for the continuous, noninvasive monitoring of biochemical and biophysical correlates of the stress state.
Collapse
|
11
|
Sarkar S, Gulati K, Mishra A, Poluri KM. Protein nanocomposites: Special inferences to lysozyme based nanomaterials. Int J Biol Macromol 2020; 151:467-482. [DOI: 10.1016/j.ijbiomac.2020.02.179] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/19/2022]
|
12
|
Ahmady IM, Hameed MK, Almehdi AM, Arooj M, Workie B, Sahle-Demessie E, Han C, Mohamed AA. Green and cytocompatible carboxyl modified gold-lysozyme nanoantibacterial for combating multidrug-resistant superbugs. Biomater Sci 2020; 7:5016-5026. [PMID: 31620700 DOI: 10.1039/c9bm00935c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The dissemination of multi-drug resistant (MDR) superbugs in hospital environments, communities and food animals and the very dynamic bacterial mutation frequency require the development of prolonged therapeutic strategies to gain mastery over antibiotic resistance. A AuNP-lysozyme nanoantibacterial was fabricated by the conjugation of AuNPs-C6H4-4-COOH with lysozyme via green reduction of aryldiazonium gold(iii) salt [HOOC-4-C6H4N[triple bond, length as m-dash]N]AuCl4. Results from molecular docking calculations aimed at revealing the binding mode of benzoic acid with the lysozyme structure clearly showed the lowest energy conformation with benzoic acid bound in the deep buried hydrophobic cavity of the protein active site through strong hydrogen bonding and hydrophobic interactions, thus validating the experimental outcomes of the current study which also exhibited the binding of -COOH functional groups in the interior of the protein structure. The superiority of the lysozyme bioconjugate against superbugs was demonstrated by the enhanced and broadened lysozyme antibacterial activities of 98-99% against extended spectrum beta lactamase (ESBL) producing Escherichia coli and imipenem-resistant Pseudomonas aeruginosa clinical isolates and a selection of Gram-negative and Gram-positive standard ATCC strains. Selective toxicity against bacteria was confirmed by the high viability of HeLa and fibroblast cell lines and the outstanding hemocompatibility at the minimum bacterial inhibitory concentrations (MICs). Turbidimetric enzyme kinetic assay showed the enhancement of the lysozyme hydrolytic activity by gold nanoparticles on the Micrococcus lysodeikticus bacterial substrate. Using gel electrophoresis, the induced cell wall breakdown was confirmed by detecting the leaked-out bacterial genomic DNA. The integrity and morphology changes of the E. coli bacteria were investigated using a scanning electron microscope after one hour of contact with the lysozyme-gold bioconjugate. The antibacterial functionalities showed little or no damage to healthy human cells and can be applied to wound dressings and medical devices.
Collapse
Affiliation(s)
- Islam M Ahmady
- Department of Applied Biology, University of Sharjah, Sharjah 27272, United Arab Emirates
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Baykal E, Vardar G, Attar A, Altikatoglu Yapaoz M. Complexes of glucose oxidase with chitosan and dextran possessing enhanced stability. Prep Biochem Biotechnol 2020; 50:572-577. [PMID: 32003292 DOI: 10.1080/10826068.2020.1719515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In this study, the different mole ratios of glucose oxidase/chitosan/dextran-aldehyde and glucose oxidase/chitosan/dextran-sulfate complexes were synthesized. The modification of glucose oxidase by non-covalent complexation with dextran and chitosan in different molar ratios was studied in order to increase the enzyme activity. The enzyme/polymer complexes obtained were investigated by UV spectrophotometer and dynamic light scattering. Activity determination of synthesized complexes and free enzyme were performed at a temperature range. The best results were obtained by Cchitosan/Cdextran-aldehyde = 10/1 ratio and Cchitosan/Cdextran-sulfate = 1/5 ratio that were used in thermal stability, shelf life, salt stress, and ethanol effect experiments. The results demonstrated that both complexes were thermally stable at 60 °C and had superior storage stability compared to the free glucose oxidase. Complexes showed higher enzymatic activity than free enzyme in the organic solvent environment using 10% ethanol. The complexes were resistant to salt stress containing 0.1 M NaCl or CaCl2. The particle size distribution results of the triple complex evaluated the complexation of the chitosan, dextran derivative, and glucose oxidase. The average size of the triple complex in diameter was found to be 325.8 ± 9.3 nm. Overall findings suggest that the complexes of glucose oxidase, chitosan, and dextran showed significant enhancement in the enzyme activity.
Collapse
Affiliation(s)
- Ecem Baykal
- Faculty of Science and Letters, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Gokay Vardar
- Faculty of Science and Letters, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Azade Attar
- Faculty of Chemical & Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Istanbul, Turkey
| | - Melda Altikatoglu Yapaoz
- Faculty of Science and Letters, Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
14
|
Kumar K, Moitra P, Bashir M, Kondaiah P, Bhattacharya S. Natural tripeptide capped pH-sensitive gold nanoparticles for efficacious doxorubicin delivery both in vitro and in vivo. NANOSCALE 2020; 12:1067-1074. [PMID: 31845927 DOI: 10.1039/c9nr08475d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanobiotechnology has been gaining ever-increasing interest for the successful implementation of chemotherapy based treatment of cancer. Gold nanoparticles (AuNPs) capped with a natural pH-responsive short tripeptide (Lys-Phe-Gly or KFG) sequence are presented herein for significant intracellular delivery of an anti-cancer drug, doxorubicin (DOX). A particularly increased apoptotic response has been observed for DOX treatments mediated by KFG-AuNPs when compared with drug alone treatments in various cell lines (BT-474, HeLa, HEK 293 T and U251). Furthermore, KFG-AuNP mediated DOX treatment significantly decreases cell proliferation and tumor growth in a BT-474 cell xenograft model in nude mice. In addition, KFG-AuNPs demonstrate efficacious drug delivery in DOX-resistant HeLa cells (HeLa-DOXR).
Collapse
Affiliation(s)
- Krishan Kumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | |
Collapse
|
15
|
Uehara N, Sonoda N, Iwamatsu T, Haneishi C, Inagawa A. Spontaneous growth of gold nanoclusters to form gold nanoparticles in the presence of high molecular weight poly(ethylene glycol). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Gherardi F, Turyanska L, Ferrari E, Weston N, Fay MW, Colston BJ. Immobilized Enzymes on Gold Nanoparticles: From Enhanced Stability to Cleaning of Heritage Textiles. ACS APPLIED BIO MATERIALS 2019; 2:5136-5143. [PMID: 35021456 DOI: 10.1021/acsabm.9b00802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Enzyme-based treatments are used in heritage conservation for the effective removal of glues and other damaging organic layers from the surfaces of historic and artistic works. Despite their potential, however, the application of enzymatic treatments is currently limited because of their poor efficiency and low operational and environmental stability. We demonstrate the use of α-amylase immobilized on gold nanoparticles to improve the efficacy of enzymatic treatments enhancing both the reactivity and the stability of the formulations. Gold nanoparticles coated with α-amylase exhibit significant advantages compared to free enzymes. We report up to 5× greater resistance to environmental changes, up to 2× higher efficacy toward removal of starch-based glues from textiles and deeper penetration through the fibers, without causing damage or inducing salt precipitation. These results offer exciting prospects for the development of enzymatic formulations, both for heritage conservation and the wider application of enzymes, such as in medicine, the detergent industry, and green chemistry.
Collapse
Affiliation(s)
| | - Lyudmila Turyanska
- School of Chemistry, University of Lincoln, Lincoln LN6 7TS, U.K.,School of Physics and Astronomy, University of Nottingham, Nottingham NG72RD, U.K
| | - Enrico Ferrari
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, U.K
| | - Nicola Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham NG7 2RD, U.K
| | - Michael W Fay
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham NG7 2RD, U.K
| | | |
Collapse
|