1
|
Zàaba NF, Ogaili RH, Ahmad F, Mohd Isa IL. Neuroinflammation and nociception in intervertebral disc degeneration: a review of precision medicine perspective. Spine J 2025; 25:1139-1153. [PMID: 39814205 DOI: 10.1016/j.spinee.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 12/30/2024] [Indexed: 01/18/2025]
Abstract
Intervertebral disc (IVD) degeneration is a major cause of low back pain (LBP), which results in disability worldwide. However, the pathogenesis of IVD degeneration mediating LBP remains unclear. Current conservative treatments and surgical interventions are both to relieve the symptoms and minimise pain; nevertheless, they are unable to reverse the degeneration. Previous studies have shown that inflammation and nociception markers are important indicators of pain mechanisms in IVD degeneration underlying LBP. As such, multiomics profiling allows the discovery of these target markers to understand the key pathological mechanisms mediating IVD degeneration underpinnings of LBP. This article provides insights into a precision medicine approach for identifying and understanding the pathophysiology of IVD degeneration associated with LPB based on the severity of the disease from early and mild to severe degenerative stages. Molecular profiling of key markers in degenerative IVDs based on patient stratification at early, mild, and severe stages will contribute to the identification of target markers associated with signalling pathways in mediating neuroinflammation, innervation, and nociception underlying painful IVD degeneration. This approach will offer an understanding of establishing personalised clinical strategies tailored to the severity of IVD degeneration for the treatment of LBP.
Collapse
Affiliation(s)
- Nurul Fariha Zàaba
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H91 W2TY, Ireland
| | - Raed H Ogaili
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; CÚRAM Research Ireland Centre for Medical Devices, School of Medicine, University of Galway, Galway H91 W2TY, Ireland.
| |
Collapse
|
2
|
Zhang W, Li Z, Wang Z, Liu K, Huang S, Liang J, Dai Z, Guo W, Mao C, Chen S, Wei J. Polyethylene microplastics promote nucleus pulposus cell senescence by inducing oxidative stress via TLR4/NOX2 axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117950. [PMID: 40020381 DOI: 10.1016/j.ecoenv.2025.117950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/10/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
This study aimed to detect and characterize microplastics in intervertebral disc and investigate their effects and molecular mechanism on intervertebral disc degeneration. We collected intervertebral disc tissues from cervical, lumbar, and thoracolumbar segments and used Raman spectroscopy to identify and characterize microplastics. Among 80 samples, 47 contained microplastics, with polyethylene being the most prevalent type. To explore the effects of polyethylene microplastics (PE-MPs), we established a mouse model and a nucleus pulposus cell model. Reactive oxygen species (ROS) levels were assessed via immunofluorescence staining, cell viability was measured using the CCK-8 assay, and protein expression related to the Toll-like receptor 4 (TLR4)/NADPH oxidase 2 (NOX2) axis, oxidative stress, and nucleus pulposus degeneration were evaluated through western blotting and immunofluorescence staining. Results showed that PE-MPs exposure led to intervertebral disc degeneration by inducing oxidative stress and activating the TLR4 / NOX2 axis, which increased the senescence of nucleus pulposus cells. These effects were mitigated by TLR4 and NOX2 inhibitors. This research highlights the existence of microplastics in human intervertebral disc tissue and unveils a novel mechanism of nucleus pulposus cell senescence induced by PE-MPs, offering new avenues for clinical treatment of microplastic-related disc degeneration.
Collapse
Affiliation(s)
- Weilin Zhang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhencong Li
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhongwei Wang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Kuize Liu
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Shengbang Huang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jinguo Liang
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhiwen Dai
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Weixiong Guo
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chao Mao
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Siyuan Chen
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jinsong Wei
- Department of Spinal Degeneration and Deformity Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
3
|
Song C, Liu F, Wu X, Zhou D, Mei Y, Wei Z, Shi H, Zeng L, Chen F, Jiang F, Liu Z. ASIC1a mediated nucleus pulposus cells pyroptosis and glycolytic crosstalk as a molecular basis for intervertebral disc degeneration. Inflamm Res 2025; 74:29. [PMID: 39870819 DOI: 10.1007/s00011-025-02003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease. PURPOSE To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy. METHODS By developing keywords search strategy, literature was found and screened using databases such as PUBMED, Google Scholar, Web of Science, China National Knowledge Infrastructure, and others. Hub genes, protein interaction networks, clinical transcriptome data validation, and enrichment analysis were used to further validate relevant biological pathways. RESULTS It is clear that disc degeneration is associated with apoptosis or pyroptosis, inflammation, and an acidic environment based on literature review. The process of IVDD is intimately associated with pyroptosis, inflammation, and an acidic environment. The precise mechanism may entail the regulation of key genes such NLRP3, ASIC1a, IL1β, TNF-a, and GSDMD. While the acidic environment exacerbated extracellular matrix degradation and promoted cellular senescence and inflammatory factor expression, it was found to be unfavorable for NPCs survival and proliferation. Moreover, NPCs pyroptosis in an acidic environment, the molecular mechanism behind this phenomenon may be connected to ASIC1a mediated Ca + influx. On the other hand, IVDD can be constantly promoted by the interaction between the degenerating disc's acidic and inflammatory environments through "crosstalk" between anaerobic glycolysis and positive feedback. CONCLUSION In summary, the inflammatory process in NPCs is made worse by the buildup of glucose brought on by metabolic problems, such as anaerobic glycolytic processes, and pyroptosis caused by excessive glucose may be mitigated by inhibiting endoplasmic reticulum stress. A new therapeutic approach for IVDD will involve using ASIC1a as a regulatory target to enhance the inflammatory environment and decrease the incidence of NPCs pyroptosis. Following this, anaerobic glycolysis will be regulated, lactic acid generation will be reduced, and the degenerative vicious loop will be blocked.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Orthopedics, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Fei Liu
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
- Department of Orthopedics, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaofei Wu
- Department of Orthopedics, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Daqian Zhou
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Yongliang Mei
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Zhangchao Wei
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Houyin Shi
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Lianlin Zeng
- Department of Rehabilitation Medicine, Suining Central Hospital, Suining, Sichuan Provience, China.
| | - Feng Chen
- Department of Orthopedics, RuiKang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China.
| | - Feng Jiang
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
| | - Zongchao Liu
- Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
- Luzhou Longmatan District People's Hospital, No.182 Chunhui Road, Longmatan District, Luzhou, Sichuan Province, China.
| |
Collapse
|
4
|
Baidya A, Budiman A, Jain S, Oz Y, Annabi N. Engineering Tough and Elastic Polyvinyl Alcohol-Based Hydrogel with Antimicrobial Properties. ADVANCED NANOBIOMED RESEARCH 2024; 4:2300173. [PMID: 39650171 PMCID: PMC11620288 DOI: 10.1002/anbr.202300173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
Hydrogels have been extensively used for tissue engineering applications due to their versatility in structure and physical properties, which can mimic native tissues. Although significant progress has been made towards designing hydrogels for soft tissue repair, engineering hydrogels that resemble load-bearing tissues is still considered a great challenge due to their specific mechano-physical demands. Here, we report microporous, tough, yet highly compressible poly(vinyl alcohol) (PVA)-based hydrogels for potential applications in repairing or replacing different load-bearing tissues. The synergy of freeze-thawing and the Hofmeister effect, which controlled the spatial arrangement and aggregation of polymer chains, facilitated the formation of micro-structured frameworks with tunable porosity. While the maximum mechanical strength, toughness, and stretchability of the engineered hydrogel were ~390 kPa, ~388 kJ/m3, and ~170%, respectively, the Young's modulus based on compression testing was found to be in the range of ~0.02 - 0.30 MPa, highlighting the all-in-one mechanically enriched nature of the hydrogel system. Furthermore, the minimal swelling and degradation rate of the engineered hydrogel met the specific requirements of load-bearing tissues. Finally, excellent antibacterial resistance as well as in vitro biocompatibility of the hydrogel demonstrated its potential for the replacement of load-bearing tissues.
Collapse
Affiliation(s)
- Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Annabella Budiman
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yavuz Oz
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Wang Y, Zhang C, Cheng J, Yan T, He Q, Huang D, Liu J, Wang Z. Cutting-Edge Biomaterials in Intervertebral Disc Degeneration Tissue Engineering. Pharmaceutics 2024; 16:979. [PMID: 39204324 PMCID: PMC11359550 DOI: 10.3390/pharmaceutics16080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) stands as the foremost contributor to low back pain (LBP), imposing a substantial weight on the world economy. Traditional treatment modalities encompass both conservative approaches and surgical interventions; however, the former falls short in halting IVDD progression, while the latter carries inherent risks. Hence, the quest for an efficacious method to reverse IVDD onset is paramount. Biomaterial delivery systems, exemplified by hydrogels, microspheres, and microneedles, renowned for their exceptional biocompatibility, biodegradability, biological efficacy, and mechanical attributes, have found widespread application in bone, cartilage, and various tissue engineering endeavors. Consequently, IVD tissue engineering has emerged as a burgeoning field of interest. This paper succinctly introduces the intervertebral disc (IVD) structure and the pathophysiology of IVDD, meticulously classifies biomaterials for IVD repair, and reviews recent advances in the field. Particularly, the strengths and weaknesses of biomaterials in IVD tissue engineering are emphasized, and potential avenues for future research are suggested.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Chuyue Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Taoxu Yan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Qing He
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Q.H.); (D.H.)
| | - Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Q.H.); (D.H.)
| | - Jianheng Liu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; (Y.W.); (C.Z.); (J.C.); (T.Y.)
| |
Collapse
|
6
|
Schol J, Tamagawa S, Volleman TNE, Ishijima M, Sakai D. A comprehensive review of cell transplantation and platelet-rich plasma therapy for the treatment of disc degeneration-related back and neck pain: A systematic evidence-based analysis. JOR Spine 2024; 7:e1348. [PMID: 38919468 PMCID: PMC11196836 DOI: 10.1002/jsp2.1348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Low back pain (LBP) and neck pain predominate as the primary causes of disability. Cell- and platelet-rich plasma (PRP) products are potential therapies with clinical trials and reviews promoting their efficacy. Nonetheless, they frequently disregard the clinical significance of reported improvements. In this systematic review, the effectuated improvements in pain, disability, quality of life (QoL), and radiographic images are comprehensively described and scored on their clinical significance. An electronic database literature search was conducted on July 2023 for in-human assessment of cell or PRP products to alleviate discogenic pain. Papers were screened on quantitative pain, disability, QoL, radiographic improvements, and safety outcomes. Risk of bias was assessed through MINORS and Cochrane Source of Bias tools. Reported outcomes were obtained, calculated, and assessed to meet minimal clinically important difference (MCID) standards. From 7623 screened papers, a total of 80 articles met the eligibility criteria, presenting 68 specific studies. These presented at least 1974 treated patients. Overall, cell/PRP injections could alleviate pain and disability, resulting in MCID for pain and disability in up to a 2-year follow-up, similar to those observed in patients undergoing spinal fusion. Included trials predominantly presented high levels of bias, involved heterogeneous study designs, and only a minimal number of randomized controlled trials. Nonetheless, a clear clinically significant impact was observed for cell- and PRP-treated cohorts with overall good safety profiles. These results highlight a strong therapeutic potential but also underline the need for future cost-effectiveness assessments to determine the benefits of cell/PRP treatments.
Collapse
Affiliation(s)
- Jordy Schol
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
- Tokai University Center of Regenerative MedicineIseharaJapan
| | - Shota Tamagawa
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | | | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor OrganJuntendo University Graduate School of MedicineTokyoJapan
| | - Daisuke Sakai
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
- Tokai University Center of Regenerative MedicineIseharaJapan
| |
Collapse
|
7
|
Zhou D, Liu H, Zheng Z, Wu D. Design principles in mechanically adaptable biomaterials for repairing annulus fibrosus rupture: A review. Bioact Mater 2024; 31:422-439. [PMID: 37692911 PMCID: PMC10485601 DOI: 10.1016/j.bioactmat.2023.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023] Open
Abstract
Annulus fibrosus (AF) plays a crucial role in the biomechanical loading of intervertebral disc (IVD). AF is difficult to self-heal when the annulus tears develop, because AF has a unique intricate structure and biologic milieu in vivo. Tissue engineering is promising for repairing AF rupture, but construction of suitable mechanical matching devices or scaffolds is still a grand challenge. To deeply know the varied forces involved in the movement of the native annulus is highly beneficial for designing biomimetic scaffolds to recreate the AF function. In this review, we overview six freedom degrees of forces and adhesion strength on AF tissue. Then, we summarize the mechanical modalities to simulate related forces on AF and to assess the characteristics of biomaterials. We finally outline some current advanced techniques to develop mechanically adaptable biomaterials for AF rupture repair.
Collapse
Affiliation(s)
- Dan Zhou
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Pain Research Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Wang Y, Wang Z, Tang Y, Chen Y, Fang C, Li Z, Jiao G, Chen X. Diagnostic model based on key autophagy-related genes in intervertebral disc degeneration. BMC Musculoskelet Disord 2023; 24:927. [PMID: 38041088 PMCID: PMC10691083 DOI: 10.1186/s12891-023-06886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/15/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Current research on autophagy is mainly focused on intervertebral disc tissues and cells, while there is few on human peripheral blood sample. therefore, this study constructed a diagnostic model to identify autophagy-related markers of intervertebral disc degeneration (IVDD). METHODS GSE150408 and GSE124272 datasets were acquired from the Gene Expression Omnibus database, and differential expression analysis was performed. The IVDD-autophagy genes were obtained using Weighted Gene Coexpression Network Analysis, and a diagnostic model was constructed and validated, followed by Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA). Meanwhile, miRNA-gene and transcription factor-gene interaction networks were constructed. In addition, drug-gene interactions and target genes of methylprednisolone and glucosamine were analyzed. RESULTS A total of 1,776 differentially expressed genes were identified between IVDD and control samples, and the composition of the four immune cell types was significantly different between the IVDD and control samples. The Meturquoise and Mebrown modules were significantly related to immune cells, with significant differences between the control and IVDD samples. A diagnostic model was constructed using five key IVDD-autophagy genes. The area under the curve values of the model in the training and validation datasets were 0.907 and 0.984, respectively. The enrichment scores of the two pathways were significantly different between the IVDD and healthy groups. Eight pathways in the IVDD and healthy groups had significant differences. A total of 16 miRNAs and 3 transcription factors were predicted to be of great value. In total, 84 significantly related drugs were screened for five key IVDD-autophagy genes in the diagnostic model, and three common autophagy-related target genes of methylprednisolone and glucosamine were predicted. CONCLUSION This study constructs a reliable autophagy-related diagnostic model that is strongly related to the immune microenvironment of IVD. Autophagy-related genes, including PHF23, RAB24, STAT3, TOMM5, and DNAJB9, may participate in IVDD pathogenesis. In addition, methylprednisolone and glucosamine may exert therapeutic effects on IVDD by targeting CTSD, VEGFA, and BAX genes through apoptosis, as well as the sphingolipid and AGE-RAGE signaling pathways in diabetic complications.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Spine Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P.R. China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China
| | - Zhiwei Wang
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China
| | - Yifan Tang
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China
| | - Yong Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
| | - Chuanyuan Fang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
| | - Zhihui Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, P.R. China
| | - Genlong Jiao
- Department of Spine Surgery, The Sixth Affiliated Hospital, Jinan University, Dongguan, Guangdong, 523570, P.R. China.
| | - Xiongsheng Chen
- Department of Spine Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P.R. China.
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University(Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, P.R. China.
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20008, P.R. China.
| |
Collapse
|
9
|
Koo YW, Lim CS, Darai A, Lee J, Kim W, Han I, Kim GH. Shape-memory collagen scaffold combined with hyaluronic acid for repairing intervertebral disc. Biomater Res 2023; 27:26. [PMID: 36991502 DOI: 10.1186/s40824-023-00368-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IVDD) is a common cause of chronic low back pain (LBP) and a socioeconomic burden worldwide. Conservative therapies and surgical treatments provide only symptomatic pain relief without promoting intervertebral disc (IVD) regeneration. Therefore, the clinical demand for disc regenerative therapies for disc repair is high. METHODS In this study, we used a rat tail nucleotomy model to develop mechanically stable collagen-cryogel and fibrillated collagen with shape-memory for use in minimally invasive surgery for effective treatment of IVDD. The collagen was loaded with hyaluronic acid (HA) into a rat tail nucleotomy model. RESULTS The shape-memory collagen structures exhibited outstanding chondrogenic activities, having completely similar physical properties to those of a typical shape-memory alginate construct in terms of water absorption, compressive properties, and shape-memorability behavior. The treatment of rat tail nucleotomy model with shape-memory collagen-cryogel/HA alleviated mechanical allodynia, maintained a higher concentration of water content, and preserved the disc structure by restoring the matrix proteins. CONCLUSION According to these results, the collagen-based structure could effectively repair and maintain the IVD matrix better than the controls, including HA only and shape-memory alginate with HA.
Collapse
Affiliation(s)
- Young Won Koo
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Chang Su Lim
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-Si, Gyeonggi-Do, 13496, Republic of Korea
| | - Anjani Darai
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-Si, Gyeonggi-Do, 13496, Republic of Korea
| | - JiUn Lee
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Wonjin Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-Si, Gyeonggi-Do, 13496, Republic of Korea.
| | - Geun Hyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
- Department of Biophysics, Institute of Quantum Biophysics , Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
10
|
Chu ECP, Huang KHK, Cheung G, Ng G, Lin A. Delayed Skin Allergy to Glucosamine Chondroitin Supplement. Cureus 2023; 15:e36310. [PMID: 36941906 PMCID: PMC10024115 DOI: 10.7759/cureus.36310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 03/19/2023] Open
Abstract
Glucosamine chondroitin is a popular dietary supplement used for joint health and osteoarthritis pain and is one of the dietary supplements commonly recommended by chiropractors. Herein, we present the case of a 36-year-old woman who developed a skin rash with delayed onset after taking glucosamine and chondroitin pills for lumbar degenerative joint disease. Within 3 hours of taking the supplement, she developed an itchy rash on her torso and legs. Over the next few hours, the rash spread over her entire body, and facial swelling developed. Given the timing of the symptoms after the administration of glucosamine chondroitin, an allergic reaction was suspected. The supplement was withdrawn and the allergic reactions were treated with antihistamines and steroids for several days. This case report demonstrates the need to recognize delayed allergic reactions as a potential side effect of widely used supplements, such as glucosamine chondroitin, which can produce hypersensitivity reactions in sensitive individuals.
Collapse
Affiliation(s)
- Eric Chun-Pu Chu
- Chiropractic Department, New York Medical Group, EC Healthcare, Hong Kong, HKG
| | - Kevin Hsu Kai Huang
- Chiropractic Department, New York Medical Group, EC Healthcare, Yuen Long, HKG
| | - Gordon Cheung
- Chiropractic Department, New York Medical Group, EC Healthcare, Hong Kong, HKG
| | - Gabriel Ng
- Chiropractic Department, New York Medical Group, EC Healthcare, Hong Kong, HKG
| | - Andy Lin
- Chiropractic Department, New York Medical Group, EC Healthcare, Hong Kong, HKG
| |
Collapse
|
11
|
Luo J, Darai A, Pongkulapa T, Conley B, Yang L, Han I, Lee KB. Injectable bioorthogonal hydrogel (BIOGEL) accelerates tissue regeneration in degenerated intervertebral discs. Bioact Mater 2022; 23:551-562. [PMID: 36582500 PMCID: PMC9764133 DOI: 10.1016/j.bioactmat.2022.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of back pain and precursor to more severe conditions, including disc herniation and spinal stenosis. While traditional growth factor therapies (e.g., TGFβ) are effective at transiently reversing degenerated disc by stimulation of matrix synthesis, it is increasingly accepted that bioscaffolds are required for sustained, complete IVD regeneration. Current scaffolds (e.g., metal/polymer composites, non-mammalian biopolymers) can be improved in one or more IVD regeneration demands: biodegradability, noninvasive injection, recapitulated healthy IVD biomechanics, predictable crosslinking, and matrix repair induction. To meet these demands, tetrazine-norbornene bioorthogonal ligation was combined with gelatin to create an injectable bioorthogonal hydrogel (BIOGEL). The liquid hydrogel precursors remain free-flowing across a wide range of temperatures and crosslink into a robust hydrogel after 5-10 min, allowing a human operator to easily inject the therapeutic constructs into degenerated IVD. Moreover, BIOGEL encapsulation of TGFβ potentiated histological repair (e.g., tissue architecture and matrix synthesis) and functional recovery (e.g., high water retention by promoting the matrix synthesis and reduced pain) in an in vivo rat IVD degeneration/nucleotomy model. This BIOGEL procedure readily integrates into existing nucleotomy procedures, indicating that clinical adoption should proceed with minimal difficulty. Since bioorthogonal crosslinking is essentially non-reactive towards biomolecules, our developed material platform can be extended to other payloads and degenerative injuries.
Collapse
Affiliation(s)
- Jeffrey Luo
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Anjani Darai
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, 59 Yaptap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Brian Conley
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, 59 Yaptap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Republic of Korea,Corresponding author. https://sites.google.com/view/inbolab/home
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA,Corresponding author. https://kblee.rutgers.edu/
| |
Collapse
|
12
|
Liu Z, Bian Y, Wu G, Fu C. Application of stem cells combined with biomaterial in the treatment of intervertebral disc degeneration. Front Bioeng Biotechnol 2022; 10:1077028. [PMID: 36507272 PMCID: PMC9732431 DOI: 10.3389/fbioe.2022.1077028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
As the world population is aging, intervertebral disc degeneration (IDD) is becoming a global health issue of increasing concern. A variety of disc degeneration diseases (DDDs) have been proven to be associated with IDD, and these illnesses have significant adverse effects on both individuals and society. The application of stem cells in regenerative medicine, such as blood and circulation, has been demonstrated by numerous studies. Similarly, stem cells have made exciting progress in the treatment of IDD. However, due to complex anatomical structures and functional requirements, traditional stem cell injection makes it difficult to meet people's expectations. With the continuous development of tissue engineering and biomaterials, stem cell combined with biomaterials has far more prospects than before. This review aims to objectively and comprehensively summarize the development of stem cells combined with contemporary biomaterials and the difficulties that need to be overcome.
Collapse
Affiliation(s)
- Zongtai Liu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China,Department of Orthopedics, Affiliated Hospital of Beihua University, Jilin, China
| | - Yuya Bian
- Jilin Institute of Scientific and Technical Information, Changchun, China
| | - Guangzhi Wu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Guangzhi Wu, ; Changfeng Fu,
| | - Changfeng Fu
- Department of Spine Surgery, First Hospital of Jilin University, Changchun, China,*Correspondence: Guangzhi Wu, ; Changfeng Fu,
| |
Collapse
|
13
|
Li Z, Wu Y, Tan G, Xu Z, Xue H. Exosomes and exosomal miRNAs: A new therapy for intervertebral disc degeneration. Front Pharmacol 2022; 13:992476. [PMID: 36160436 PMCID: PMC9492865 DOI: 10.3389/fphar.2022.992476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Low back pain has been found as a major cause of global disease burden and disability. Intervertebral disc degeneration is recognized as the vital factor causing low back pain. Intervertebral disc degeneration has a complex mechanism and cannot be avoided. Traditional strategies for the treatment of intervertebral disc degeneration cannot meet the needs of intervertebral disc regeneration, so novel treatment methods are urgently required. Exosomes refer to extracellular vesicles that can be released by most cells, and play major roles in intercellular material transport and information transmission. MicroRNAs have been identified as essential components in exosomes, which can be selectively ingested by exosomes and delivered to receptor cells for the regulation of the physiological activities and functions of receptor cells. Existing studies have progressively focused on the role of exosomes and exosomal microRNAs in the treatment of intervertebral disc degeneration. The focus on this paper is placed on the changes of microenvironment during intervertebral disc degeneration and the biogenesis and mechanism of action of exosomes and exosomal microRNAs. The research results and deficiencies of exosomes and exosomal microRNAs in the regulation of apoptosis, extracellular matrix homeostasis, inflammatory response, oxidative stress, and angiogenesis in intervertebral disc degeneration are primarily investigated. The aim of this paper is to identify the latest research results, potential applications and challenges of this emerging treatment strategy.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wu
- Department of Orthopedics, The First Affiliated Hospital of Shandong First Medcial Unversity, Jinan, China
| | - Guoqing Tan
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Haipeng Xue,
| |
Collapse
|
14
|
The Nrf2 antioxidant defense system in intervertebral disc degeneration: Molecular insights. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1067-1075. [PMID: 35978054 PMCID: PMC9440120 DOI: 10.1038/s12276-022-00829-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common degenerative musculoskeletal disorder and is recognized as a major contributor to discogenic lower back pain. However, the molecular mechanisms underlying IDD remain unclear, and therapeutic strategies for IDD are currently limited. Oxidative stress plays pivotal roles in the pathogenesis and progression of many age-related diseases in humans, including IDD. Nuclear factor E2-related factor 2 (Nrf2) is a master antioxidant transcription factor that protects cells against oxidative stress damage. Nrf2 is negatively modulated by Kelch-like ECH-associated protein 1 (Keap1) and exerts important effects on IDD progression. Accumulating evidence has revealed that Nrf2 can facilitate the transcription of downstream antioxidant genes in disc cells by binding to antioxidant response elements (AREs) in promoter regions, including heme oxygenase-1 (HO-1), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and NADPH quinone dehydrogenase 1 (NQO1). The Nrf2 antioxidant defense system regulates cell apoptosis, senescence, extracellular matrix (ECM) metabolism, the inflammatory response of the nucleus pulposus (NP), and calcification of the cartilaginous endplates (EP) in IDD. In this review, we aim to discuss the current knowledge on the roles of Nrf2 in IDD systematically. Insights into the activity of a protein that regulates gene expression and protects cells against oxidative stress could yield novel treatments for lower back pain. Intervertebral disc degeneration (IDD) is a common cause of lower back pain, but the molecular mechanisms underlying IDD are unclear, meaning treatment options are limited. Oxidative stress is implicated in IDD, and scientists have begun exploring the role of nuclear factor E2-related factor 2 (Nrf2), a master regulator of the body’s antioxidant responses, in regulating IDD progression. In a review of recent research, Weishi Li at Peking University Third Hospital, Beijing, China, and co-workers point out that boosting the activity of Nrf2-related signaling pathways alleviates oxidative stress in intervertebral disc cells. The researchers suggest that therapies based on non-coding RNAs may prove valuable in activating Nrf2 in IDD patients.
Collapse
|
15
|
A Biodegradable Polymeric Matrix for the Repair of Annulus Fibrosus Defects in Intervertebral Discs. Tissue Eng Regen Med 2022; 19:1311-1320. [PMID: 35816226 PMCID: PMC9679066 DOI: 10.1007/s13770-022-00466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Tissue defects in the annulus fibrosus (AF) due to intervertebral disc (IVD) degeneration or after nucleodiscectomy have little self-healing capacity. To prevent progressive degeneration of the IVD, the AF must be repaired. Biological closure has not yet been achieved and is a challenge for the research community. In this study, a scaffold made of absorbable poly (glycolic acid) (PGA) and hyaluronan (HA) that exhibit excellent biocompatibility and cell colonization properties was used to repair AF defects in an ovine model. METHODS A partial resection was performed in AF in L3/4 or L4/5 of 10 sheep and PGA-HA scaffolds were implanted on the defects (n = 5), while defects in the control group were left untreated (n = 5). Three months post-operation, the lumbar discs were sectioned and stained with hematoxylin and eosin and safranin-O/fast-green. Histological features including proteoglycan content, annular structure, cellular morphology, blood vessel ingrowth and tear/cleft formation were scored using a modified scoring scheme by 3 investigators and evaluated by a pathologist independently. RESULTS The treated AF exhibited significantly enhanced repair tissue structure with signs of proteoglycan formation compared to the untreated group. The median scores were 4.3 for the treated and 9.8 for the untreated group. Cystic degeneration, perivascular infiltration, inflammation and necrosis were only present in the untreated group. Blood vessel ingrowth and tear/cleft formation were increased, though not significant, in the untreated group while cell morphology was comparable in both groups. CONCLUSION PGA-HA scaffolds used for AF closure support repair tissue formation in an ovine lumbar disc defect model.
Collapse
|
16
|
Pedersen DD, Kim S, Wagner WR. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review. J Biomed Mater Res A 2022; 110:1460-1487. [PMID: 35481723 DOI: 10.1002/jbm.a.37394] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Early explorations of tissue engineering and regenerative medicine concepts commonly utilized simple polyesters such as polyglycolide, polylactide, and their copolymers as scaffolds. These biomaterials were deemed clinically acceptable, readily accessible, and provided processability and a generally known biological response. With experience and refinement of approaches, greater control of material properties and integrated bioactivity has received emphasis and a broadened palette of synthetic biomaterials has been employed. Biodegradable polyurethanes (PUs) have emerged as an attractive option for synthetic scaffolds in a variety of tissue applications because of their flexibility in molecular design and ability to fulfill mechanical property objectives, particularly in soft tissue applications. Biodegradable PUs are highly customizable based on their composition and processability to impart tailored mechanical and degradation behavior. Additionally, bioactive agents can be readily incorporated into these scaffolds to drive a desired biological response. Enthusiasm for biodegradable PU scaffolds has soared in recent years, leading to rapid growth in the literature documenting novel PU chemistries, scaffold designs, mechanical properties, and aspects of biocompatibility. Despite the enthusiasm in the field, there are still few examples of biodegradable PU scaffolds that have achieved regulatory approval and routine clinical use. However, there is a growing literature where biodegradable PU scaffolds are being specifically developed for a wide range of pathologies and where relevant pre-clinical models are being employed. The purpose of this review is first to highlight examples of clinically used biodegradable PU scaffolds, and then to summarize the growing body of reports on pre-clinical applications of biodegradable PU scaffolds.
Collapse
Affiliation(s)
- Drake D Pedersen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Kritschil R, Scott M, Sowa G, Vo N. Role of autophagy in intervertebral disc degeneration. J Cell Physiol 2022; 237:1266-1284. [PMID: 34787318 PMCID: PMC8866220 DOI: 10.1002/jcp.30631] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 02/03/2023]
Abstract
Intervertebral disc degeneration (IDD) is a leading contributor to low back pain. The intervertebral disc (IVD) is composed of three tissue types: the central gelatinous nucleus pulposus (NP) tissue, the surrounding annulus fibrosus (AF) tissue, and the inferior and superior cartilage endplates. The IVD microenvironment is hypoxic, acidic, hyperosmotic, and low in nutrients because it is mostly avascular. The cellular processes that underlie IDD initiation and progression are still poorly understood. Specifically, a lack of understanding regarding NP cell metabolism and physiology hinders the development of effective therapeutics to treat IDD patients. Autophagy is a vital intracellular degradation process that removes damaged organelles, misfolded proteins, and intracellular pathogens and recycles the degraded components for cellular energy and function. NP cells have adapted to survive within their harsh tissue microenvironment using processes that are largely unknown, and we postulate autophagy is one of these undiscovered mechanisms. In this review, we describe unique features of the IVD tissue, review how physiological stressors impact autophagy in NP cells in vitro, survey the current understanding of autophagy regulation in the IVD, and assess the relationship between autophagy and IDD. Published studies confirm autophagy markers are present in IVD tissue, and IVD cells can regulate autophagy in response to cellular stressors in vitro. However, data are still lacking to determine the exact mechanisms regulating autophagy in IVD cells. More in-depth research is needed to establish whether autophagy is necessary to maintain IVD cell health and validate autophagy as a relevant therapeutic target for treating IDD.
Collapse
Affiliation(s)
- Rebecca Kritschil
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA
| | - Melanie Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA,Pittsburgh Trauma Research Center, Pittsburgh, PA
| | - Gwendolyn Sowa
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA,Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA
| | - Nam Vo
- Department of Orthopedic Surgery, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
18
|
Williams RJ, Tryfonidou MA, Snuggs JW, Le Maitre CL. Cell sources proposed for nucleus pulposus regeneration. JOR Spine 2021; 4:e1175. [PMID: 35005441 PMCID: PMC8717099 DOI: 10.1002/jsp2.1175] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Lower back pain (LBP) occurs in 80% of adults in their lifetime; resulting in LBP being one of the biggest causes of disability worldwide. Chronic LBP has been linked to the degeneration of the intervertebral disc (IVD). The current treatments for chronic back pain only provide alleviation of symptoms through pain relief, tissue removal, or spinal fusion; none of which target regenerating the degenerate IVD. As nucleus pulposus (NP) degeneration is thought to represent a key initiation site of IVD degeneration, cell therapy that specifically targets the restoration of the NP has been reviewed here. A literature search to quantitatively assess all cell types used in NP regeneration was undertaken. With key cell sources: NP cells; annulus fibrosus cells; notochordal cells; chondrocytes; bone marrow mesenchymal stromal cells; adipose-derived stromal cells; and induced pluripotent stem cells extensively analyzed for their regenerative potential of the NP. This review highlights: accessibility; expansion capability in vitro; cell survival in an IVD environment; regenerative potential; and safety for these key potential cell sources. In conclusion, while several potential cell sources have been proposed, iPSC may provide the most promising regenerative potential.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Biomedical Research Centre, BiosciencesSheffield Hallam UniversitySheffieldUK
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | |
Collapse
|
19
|
Malli SE, Kumbhkarn P, Dewle A, Srivastava A. Evaluation of Tissue Engineering Approaches for Intervertebral Disc Regeneration in Relevant Animal Models. ACS APPLIED BIO MATERIALS 2021; 4:7721-7737. [PMID: 35006757 DOI: 10.1021/acsabm.1c00500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Translation of tissue engineering strategies for the regeneration of intervertebral disc (IVD) requires a strong understanding of pathophysiology through the relevant animal model. There is no relevant animal model due to differences in disc anatomy, cellular composition, extracellular matrix components, disc physiology, and mechanical strength from humans. However, available animal models if used correctly could provide clinically relevant information for the translation into humans. In this review, we have investigated different types of strategies for the development of clinically relevant animal models to study biomaterials, cells, biomolecular or their combination in developing tissue engineering-based treatment strategies. Tissue engineering strategies that utilize various animal models for IVD regeneration are summarized and outcomes have been discussed. The understanding of animal models for the validation of regenerative approaches is employed to understand and treat the pathophysiology of degenerative disc disease (DDD) before proceeding for human trials. These animal models play an important role in building a therapeutic regime for IVD tissue regeneration, which can serve as a platform for clinical applications.
Collapse
Affiliation(s)
- Sweety Evangeli Malli
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Pranav Kumbhkarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Ankush Dewle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| |
Collapse
|
20
|
Zhu M, Tan J, Liu L, Tian J, Li L, Luo B, Zhou C, Lu L. Construction of biomimetic artificial intervertebral disc scaffold via 3D printing and electrospinning. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112310. [PMID: 34474861 DOI: 10.1016/j.msec.2021.112310] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
Intervertebral disc (IVD) degeneration is a clinically disease that seriously endangers people's health. Tissue engineering provides a promising method to repair and regenerate the damaged IVD physiological function. Successfully tissue-engineered IVD scaffold should mimic the native IVD histological and macro structures. Here, 3D printing and electrospinning were combined to construct an artificial IVD composite scaffold. Poly lactide (PLA) was used to print the IVD frame structure, the oriented porous poly(l-lactide)/octa-armed polyhedral oligomeric silsesquioxanes (PLLA/POSS-(PLLA)8) fiber bundles simulated the annulus fibrosus (AF), and the gellan gum/poly (ethylene glycol) diacrylate (GG/PEGDA) double network hydrogel loaded with bone marrow mesenchymal stem cells (BMSCs) simulated the nucleus pulposus (NP) structure. Morphological and mechanical tests showed that the structure and mechanical properties of the IVD scaffold were similar to that of the natural IVD. The compression modulus of the scaffold is about 10 MPa, which is comparable to natural IVD and provides good mechanical support for tissue repair and regeneration. At the same time, the porosity and mechanical properties of the scaffold can be regulated through the 3D model design. In the AF structure, the fiber bundles are oriented concentrically with each subsequent layer oriented 60° to the spinal column, and can withstand the tension generated during the deformation of the NP. In the NP structure, BMSCs were evenly distributed in the hydrogel and could maintain high cell viability. Animal experiment results demonstrated that the biomimetic artificial IVD scaffold could maintain the disc space and produce the new extracellular matrix. This engineered biomimetic IVD scaffold is a promising biomaterial for individualized IVD repair and regeneration.
Collapse
Affiliation(s)
- Meiling Zhu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jianwang Tan
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Lu Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jinhuan Tian
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Lihua Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Binghong Luo
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Lu Lu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
21
|
Dou Y, Sun X, Ma X, Zhao X, Yang Q. Intervertebral Disk Degeneration: The Microenvironment and Tissue Engineering Strategies. Front Bioeng Biotechnol 2021; 9:592118. [PMID: 34354983 PMCID: PMC8329559 DOI: 10.3389/fbioe.2021.592118] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disk degeneration (IVDD) is a leading cause of disability. The degeneration is inevitable, and the mechanisms are complex. Current therapeutic strategies mainly focus on the relief of symptoms, not the intrinsic regeneration of the intervertebral disk (IVD). Tissue engineering is a promising strategy for IVDD due to its ability to restore a healthy microenvironment and promote IVD regeneration. This review briefly summarizes the IVD anatomy and composition and then sets out elements of the microenvironment and the interactions. We rationalized different scaffolds based on tissue engineering strategies used recently. To fulfill the complete restoration of a healthy IVD microenvironment, we propose that various tissue engineering strategies should be combined and customized to create personalized therapeutic strategies for each individual.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xinlong Ma
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
22
|
Architecture-Promoted Biomechanical Performance-Tuning of Tissue-Engineered Constructs for Biological Intervertebral Disc Replacement. MATERIALS 2021; 14:ma14102692. [PMID: 34065565 PMCID: PMC8160686 DOI: 10.3390/ma14102692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022]
Abstract
Background: Biological approaches to intervertebral disc (IVD) restoration and/or regeneration have become of increasing interest. However, the IVD comprises a viscoelastic system whose biological replacement remains challenging. The present study sought to design load-sharing two-component model systems of circular, nested, concentric elements reflecting the nucleus pulposus and annulus fibrosus. Specifically, we wanted to investigate the effect of architectural design variations on (1) model system failure loads when testing the individual materials either separately or homogeneously mixed, and (2) also evaluate the potential of modulating other mechanical properties of the model systems. Methods: Two sets of softer and harder biomaterials, 0.5% and 5% agarose vs. 0.5% agarose and gelatin, were used for fabrication. Architectural design variations were realized by varying ring geometries and amounts while keeping the material composition across designs comparable. Results: Variations in the architectural design, such as lamellar width, number, and order, combined with choosing specific biomaterial properties, strongly influenced the biomechanical performance of IVD constructs. Biomechanical characterization revealed that the single most important parameter, in which the model systems vastly exceeded those of the individual materials, was failure load. The model system failure loads were 32.21- and 84.11-fold higher than those of the agarose materials and 55.03- and 2.14-fold higher than those of the agarose and gelatin materials used for system fabrication. The compressive strength, dynamic stiffness, and viscoelasticity of the model systems were always in the range of the individual materials. Conclusions: Relevant architecture-promoted biomechanical performance-tuning of tissue-engineered constructs for biological IVD replacement can be realized by slight modifications in the design of constructs while preserving the materials’ compositions. Minimal variations in the architectural design can be used to precisely control structure–function relations for IVD constructs rather than choosing different materials. These fundamental findings have important implications for efficient tissue-engineering of IVDs and other load-bearing tissues, as potential implants need to withstand high in situ loads.
Collapse
|
23
|
Prosthodontics Using Removable Platform Switching Technologies (Multiunit, On1) as Exemplified by Conical Connection Implant Systems for Early and Immediate Loading. Int J Dent 2021; 2021:6633804. [PMID: 33986808 PMCID: PMC8079217 DOI: 10.1155/2021/6633804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022] Open
Abstract
The removable platform switching technology (multiunit, Оn1) was tested intraoperatively using the passive placement technique as exemplified by a conical connection implant system, which makes it possible to visually control the placement of these platforms with respect to the alveolar bone in the correct orthopedic position. The technology is characterized by a rapid epithelialization of tissues around the base platform until the final integration of the implant, minimal trauma in the emergence profile zone, and an improved minimally invasive orthopedic protocol for working on a removable platform switching base.
Collapse
|
24
|
Sako K, Sakai D, Nakamura Y, Schol J, Matsushita E, Warita T, Horikita N, Sato M, Watanabe M. Effect of Whole Tissue Culture and Basic Fibroblast Growth Factor on Maintenance of Tie2 Molecule Expression in Human Nucleus Pulposus Cells. Int J Mol Sci 2021; 22:ijms22094723. [PMID: 33946902 PMCID: PMC8124367 DOI: 10.3390/ijms22094723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 01/07/2023] Open
Abstract
Previous work showed a link between Tie2+ nucleus pulposus progenitor cells (NPPC) and disc degeneration. However, NPPC remain difficult to maintain in culture. Here, we report whole tissue culture (WTC) combined with fibroblast growth factor 2 (FGF2) and chimeric FGF (cFGF) supplementation to support and enhance NPPC and Tie2 expression. We also examined the role of PI3K/Akt and MEK/ERK pathways in FGF2 and cFGF-induced Tie2 expression. Young herniating nucleus pulposus tissue was used. We compared WTC and standard primary cell culture, with or without 10 ng/mL FGF2. PI3K/Akt and MEK/ERK signaling pathways were examined through western blotting. Using WTC and primary cell culture, Tie2 positivity rates were 7.0 ± 2.6% and 1.9 ± 0.3% (p = 0.004), respectively. Addition of FGF2 in WTC increased Tie2 positivity rates to 14.2 ± 5.4% (p = 0.01). FGF2-stimulated expression of Tie2 was reduced 3-fold with the addition of the MEK inhibitor PD98059 (p = 0.01). However, the addition of 1 μM Akt inhibitor, 124015-1MGCN, only reduced small Tie2 expression (p = 0.42). cFGF similarly increased the Tie2 expression, but did not result in significant phosphorylation in both the MEK/ERK and PI3K/Akt pathways. WTC with FGF2 addition significantly increased Tie2 maintenance of human NPPC. Moreover, FGF2 supports Tie2 expression via MEK/ERK and PI3K/Akt signals. These findings offer promising tools and insights for the development of NPPC-based therapeutics.
Collapse
Affiliation(s)
- Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Correspondence: (K.S.); (D.S.)
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
- Correspondence: (K.S.); (D.S.)
| | - Yoshihiko Nakamura
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Jordy Schol
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Erika Matsushita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Takayuki Warita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Natsumi Horikita
- Research Center for Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (Y.N.); (J.S.); (E.M.); (T.W.); (N.H.)
| | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
25
|
Peredo AP, Gullbrand SE, Mauck RL, Smith HE. A challenging playing field: Identifying the endogenous impediments to annulus fibrosus repair. JOR Spine 2021; 4:e1133. [PMID: 33778407 PMCID: PMC7984000 DOI: 10.1002/jsp2.1133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc (IVD) herniations, caused by annulus fibrosus (AF) tears that enable disc tissue extrusion beyond the disc space, are very prevalent, especially among adults in the third to fifth decade of life. Symptomatic herniations, in which the extruded tissue compresses surrounding nerves, are characterized by back pain, numbness, and tingling and can cause extreme physical disability. Patients whose symptoms persist after nonoperative intervention may undergo surgical removal of the herniated tissue via microdiscectomy surgery. The AF, however, which has a poor endogenous healing ability, is left unrepaired increasing the risk for re-herniation and pre-disposing the IVD to degenerative disc disease. The lack of understanding of the mechanisms involved in native AF repair limits the design of repair systems that overcome the impediments to successful AF restoration. Moreover, the complexity of the AF structure and the challenging anatomy of the repair environment represents a significant challenge for the design of new repair devices. While progress has been made towards the development of an effective AF repair technique, these methods have yet to demonstrate long-term repair and recovery of IVD biomechanics. In this review, the limitations of endogenous AF healing are discussed and key cellular events and factors involved are highlighted to identify potential therapeutic targets that can be integrated into AF repair methods. Clinical repair strategies and their limitations are described to further guide the design of repair approaches that effectively restore native tissue structure and function.
Collapse
Affiliation(s)
- Ana P. Peredo
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Robert L. Mauck
- Department of BioengineeringSchool of Engineering and Applied Science, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Harvey E. Smith
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic SurgeryPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Translational Musculoskeletal Research CenterCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
| |
Collapse
|