1
|
Tan H, Shen Z, Wang X, Shu S, Deng J, Lu L, Fan Z, Hu D, Cheng P, Cao X, Huang Q. Endoplasmic reticulum-targeted biomimetic nanoparticles induce apoptosis and ferroptosis by regulating endoplasmic reticulum function in colon cancer. J Control Release 2024; 375:422-437. [PMID: 39278355 DOI: 10.1016/j.jconrel.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Colorectal cancer (CRC) is a major threat to human health, as it is one of the most common malignancies with a high incidence and mortality rate. The cancer cell membrane (CCM) has significant potential in targeted tumor drug delivery due to its membrane antigen-mediated homologous targeting ability. The endoplasmic reticulum (ER) in cancer cells plays a crucial role in apoptosis and ferroptosis. In this study, we developed an ER-targeted peptide-modified CCM-biomimetic nanoparticle-delivered lovastatin (LOV) nanomedicine delivery system (EMPP-LOV) for cancer treatment. Both in vitro and in vivo experiments demonstrated that EMPP could effectively target cancer cells and localize within the ER. EMPP-LOV modulated ER function to promote apoptosis and ferroptosis in tumor cells. Furthermore, synergistic antitumor efficacy was observed in both in vitro and in vivo models. EMPP-LOV induced apoptosis in CRC cells by over-activating endoplasmic reticulum stress and promoted ferroptosis by inhibiting the mevalonate pathway, leading to synergistic tumor growth inhibition with minimal toxicity to major organs. Overall, the EMPP-LOV delivery system, with its subcellular targeting capability within tumor cells, presents a promising therapeutic platform for CRC treatment.
Collapse
Affiliation(s)
- Hongxin Tan
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ziqi Shen
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohua Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sicheng Shu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jie Deng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li Lu
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Ziyan Fan
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Danni Hu
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Pu Cheng
- Department of Gynaecology, The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xi Cao
- School of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China; Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| | - Qi Huang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Liu S, Hu M, Liu X, Liu X, Chen T, Zhu Y, Liang T, Xiao S, Li P, Ma X. Nanoparticles and Antiviral Vaccines. Vaccines (Basel) 2023; 12:30. [PMID: 38250843 PMCID: PMC10819235 DOI: 10.3390/vaccines12010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Viruses have threatened human lives for decades, causing both chronic and acute infections accompanied by mild to severe symptoms. During the long journey of confrontation, humans have developed intricate immune systems to combat viral infections. In parallel, vaccines are invented and administrated to induce strong protective immunity while generating few adverse effects. With advancements in biochemistry and biophysics, different kinds of vaccines in versatile forms have been utilized to prevent virus infections, although the safety and effectiveness of these vaccines are diverse from each other. In this review, we first listed and described major pathogenic viruses and their pandemics that emerged in the past two centuries. Furthermore, we summarized the distinctive characteristics of different antiviral vaccines and adjuvants. Subsequently, in the main body, we reviewed recent advances of nanoparticles in the development of next-generation vaccines against influenza viruses, coronaviruses, HIV, hepatitis viruses, and many others. Specifically, we described applications of self-assembling protein polymers, virus-like particles, nano-carriers, and nano-adjuvants in antiviral vaccines. We also discussed the therapeutic potential of nanoparticles in developing safe and effective mucosal vaccines. Nanoparticle techniques could be promising platforms for developing broad-spectrum, preventive, or therapeutic antiviral vaccines.
Collapse
Affiliation(s)
- Sen Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Meilin Hu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Xiaoqing Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xingyu Liu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Tao Chen
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Yiqiang Zhu
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Taizhen Liang
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
| | - Shiqi Xiao
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Peiwen Li
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
| | - Xiancai Ma
- Guangzhou National Laboratory, Guangzhou International Bio-Island, Guangzhou 510005, China; (S.L.); (M.H.); (X.L.); (X.L.); (T.C.); (Y.Z.); (T.L.); (S.X.); (P.L.)
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 511400, China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
3
|
Vasquez-Martínez N, Guillen D, Moreno-Mendieta SA, Sanchez S, Rodríguez-Sanoja R. The Role of Mucoadhesion and Mucopenetration in the Immune Response Induced by Polymer-Based Mucosal Adjuvants. Polymers (Basel) 2023; 15:1615. [PMID: 37050229 PMCID: PMC10097111 DOI: 10.3390/polym15071615] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Mucus is a viscoelastic gel that acts as a protective barrier for epithelial surfaces. The mucosal vehicles and adjuvants need to pass through the mucus layer to make drugs and vaccine delivery by mucosal routes possible. The mucoadhesion of polymer particle adjuvants significantly increases the contact time between vaccine formulations and the mucosa; then, the particles can penetrate the mucus layer and epithelium to reach mucosa-associated lymphoid tissues. This review presents the key findings that have aided in understanding mucoadhesion and mucopenetration while exploring the influence of physicochemical characteristics on mucus-polymer interactions. We describe polymer-based particles designed with mucoadhesive or mucopenetrating properties and discuss the impact of mucoadhesive polymers on local and systemic immune responses after mucosal immunization. In future research, more attention paid to the design and development of mucosal adjuvants could lead to more effective vaccines.
Collapse
Affiliation(s)
- Nathaly Vasquez-Martínez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
- Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México, Circuito de Posgrado, C.U., Coyoacán, Mexico City 04510, Mexico
| | - Daniel Guillen
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| | - Silvia Andrea Moreno-Mendieta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
- Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México, Circuito de Posgrado, C.U., Coyoacán, Mexico City 04510, Mexico
- Consejo Nacional de Ciencia y Tecnología, Benito Juárez, Mexico City 03940, Mexico
| | - Sergio Sanchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| |
Collapse
|
4
|
Yin W, Xuan D, Wang H, Zhou M, Deng B, Ma F, Lu Y, Zhang J. Biodegradable Imiquimod-Loaded Mesoporous Organosilica as a Nanocarrier and Adjuvant for Enhanced and Prolonged Immunity against Foot-and-Mouth Disease Virus in Mice. ACS APPLIED BIO MATERIALS 2022; 5:3095-3106. [PMID: 35679606 DOI: 10.1021/acsabm.2c00382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Foot-and-mouth disease (FMD), a serious, fast-spreading, and virulent disease, has led to huge economic losses to people all over the world. Vaccines are the most effective way to control FMD. However, the weak immunogenicity of inactivated FMD virus (FMDV) requires the addition of adjuvants to enhance the immune effectiveness of the vaccines. Herein, we formulated and fabricated biodegradable dendritic mesoporous tetrasulfide-doped organosilica nanoparticles SOMSN with imiquimod complex (SOMSN-IMQ) and used it as a platform for FMD vaccine delivery and as an adjuvant. SOMSN-IMQ demonstrated excellent stability for 6 months when stored in PBS, while it could be completely degraded within 42 days in SBF at room temperature. Biosafety experiments such as cell toxicity, hemolysis, and histology indicated that the as-prepared SOMSN-IMQ showed nontoxicity and good biocompatibility. Furthermore, SOMSN-IMQ exhibited a maximum adsorption capacity of 1000 μg/mg for inactivated FMDV antigens. Our results showed that SOMSN-IMQ can be effectively engulfed by RAW264.7 cells in a dose-dependent manner. After immunization, SOMSN-IMQ@FMDV can elicit persistent higher antibody levels, higher IgG2a/IgG1 ratio, and cytokine expression, which indicated that SOMSN-IMQ@FMDV triggered superior humoral and cellular immune responses. Moreover, SOMSN-IMQ could provoke maturation and activation of dendritic cells in lymph nodes (LDCs) as well as the proliferation of lymphocytes in vivo. Thus, SOMSN-IMQ could promote effective and potent immunity and provide a promising adjuvant platform for FMDV vaccination with acceptable safety.
Collapse
Affiliation(s)
- Wenzhu Yin
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious and Zoonoses, Yangzhou 225009, P. R. China
| | - Dechun Xuan
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China.,School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Haiyan Wang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Mingxu Zhou
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Bihua Deng
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China.,School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious and Zoonoses, Yangzhou 225009, P. R. China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P. R. China.,School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious and Zoonoses, Yangzhou 225009, P. R. China
| |
Collapse
|
5
|
Pettinari C, Pettinari R, Di Nicola C, Tombesi A, Scuri S, Marchetti F. Antimicrobial MOFs. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214121] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Wu S, Xia Y, Hu Y, Ma G. Bio-mimic particles for the enhanced vaccinations: Lessons learnt from the natural traits and pathogenic invasion. Adv Drug Deliv Rev 2021; 176:113871. [PMID: 34311014 DOI: 10.1016/j.addr.2021.113871] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 12/21/2022]
Abstract
In the combat against pathogens, the immune systems were evolved with the immune recognitions against the various danger signals, which responded vigorously upon the pathogen invasions and elicited potent antibodies or T cell engagement against the re-infections. Envisage with the prevailing pandemics and increasing demands for cancer vaccines, bio-mimic particles were developed to imitate the natural traits of the pathogens, which conferred the optimal strategies to stimulate the immune engagement and let to the increased vaccine efficacy. Here, the recent development in bio-mimic particles, as well as the natural cues from the pathogens were discussed. As such, the designing principles that adapted from the physiochemical properties of the pathogens were unfolded as the surface characteristics (hydrophobic, nano-pattern, antigen display, charge), properties (size, shape, softness) and the delivered components (peptide, protein, nuclear acids, toll-like receptor (TLR) agonist, antibody). Additionally, the strategies for the efficient delivery, regarding the biodistribution, internalization and presentation of the antigens were also illustrated. Through reviewing the state-of-art in biomimetic particles, the lesson learnt from the natural traits and pathogenic invasion may shed light on the rational design for the enhanced vaccinations.
Collapse
|
7
|
Liu L, Wannemuehler MJ, Narasimhan B. Biomaterial nanocarrier-driven mechanisms to modulate anti-tumor immunity. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 20. [PMID: 34423179 DOI: 10.1016/j.cobme.2021.100322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer immunotherapy approaches that utilize or enhance patients' inherent immunity have received extensive attention in the past decade. Biomaterial-based nanocarriers with tunable physicochemical properties offer significant promise in cancer immunotherapies. They can lower payload toxicity, provide sustained release of diverse payloads, and target specific disease site(s). Furthermore, nanocarrier-mediated immunotherapies can induce antigen-specific T lymphocytes, tissue-directed immune activation, and apoptosis of cancer cells all of which may comprise a new paradigm in cancer immunotherapy. This review describes key steps in biomaterial-mediated immune activation ranging from biomaterial surface protein adsorption, antigen presenting cell processing, and T cell activation. Nanocarrier-based immunomodulatory mechanisms including inherent adjuvanticity, enhanced cellular internalization, lymph node delivery, cross-presentation, and immunogenic cell death are discussed. In addition, studies that synergistically influence outcomes of nanocarrier-based combination immunotherapies are presented.
Collapse
Affiliation(s)
- Luman Liu
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA
| | - Michael J Wannemuehler
- Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA.,Nanovaccine Institute, Iowa State University, Ames, IA
| | - Balaji Narasimhan
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA.,Nanovaccine Institute, Iowa State University, Ames, IA
| |
Collapse
|